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Abstract

Many two-sided matching markets tend to unravel in time with transactions becoming

ine�ciently early. In a two-period decentralized model, this paper shows that when a

market culture allows �rms to make exploding o�ers, unraveling is more likely to occur

and lead to a less socially desirable matching outcome. However, the use of exploding

o�ers is only a necessary but not a su�cient condition for unraveling to occur. A market

with an excess supply of labor is less vulnerable to the presence of exploding o�ers; yet

the conclusion is ambiguous for a market with a larger uncertainty in early stages, which

depends on the speci�c information structure. While a banning policy on exploding o�ers

tends to be supported by high quality �rms and workers, it can be opposed by those of

low qualities. This explains the prevalence of exploding o�ers in practice.

1 Introduction

Many two-sided matching markets exhibit the tendency to unravel in time with transactions

occurring earlier and earlier. In these markets, with participants' qualities gradually revealed

over time, early transactions can lead to signi�cant e�ciency losses: due to the lack of informa-

tion in early stages, a higher probability of mismatch often leads to instability and thus costly

rematching procedures afterwards.1 In order to e�ectively halt such an unraveling process, the

previous literature has identi�ed several factors that may in�uence early moving incentives;

one of them is the use of exploding o�ers.

∗Department of Economics, The Ohio State University, 1945 North High Street, Columbus, OH 43210
(e-mail: pan.229@osu.edu). I would like to thank Paul J. Healy, Yaron Azrieli, Clayton Featherstone, Alex
Gotthard-Real, John Kagel, James Peck, Garrett Senney, Wing Suen, Bruce Weinberg, Huanxing Yang, Lixin
Ye, seminar participants at the Ohio State University, and audiences at Midwest Economic Theory Conference
for helpful comments and inspiration. All remaining errors are mine.

1Roth and Xing (1994) provide a detailed overview of various evidence for market unraveling. See also
Mongell and Roth (1991), Haruvy, Roth, and Ünver (2006), Avery, Fairbanks, and Zeckhauser (2009), Avery
et al. (2001), and Fréchette, Roth, and Ünver (2007).
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An exploding o�er is an o�er that comes with a time limit. The o�er has to be accepted

within the time limit, or it is considered rejected. In contrast, an open o�er can be held

until the end of the market. According to Niederle and Roth (2009), exploding o�ers are

prevalently used in many markets facing serious unraveling problems, such as the market

for new gastroenterologists in the US. In a lab experiment, they are able to reproduce the

facilitating e�ect of exploding o�ers on early transactions. However, not all markets that use

exploding o�ers su�er from unraveling. For example, in the job market for junior economists,

o�ers often come with short time limits, yet little tendency towards unraveling has been

observed so far.

This paper aims to reconcile the above phenomena from a theoretical perspective. In a two-

period decentralized matching market, the true qualities of workers are not fully revealed until

the second period; �rms and workers only observe a signal in the �rst period. By comparing

markets with or without a banning policy on exploding o�ers, I show that when �rms are

allowed to make exploding o�ers, equilibria without unraveling are supported by a smaller

parameter space and thus a stable matching is less likely to be achieved. Intuitively, a worker

tends to exploit an open o�er by holding it until the last period. In response, a �rm uses an

exploding o�er to eliminate the risk of being rejected and remaining unmatched at end of the

market. The time limit forces the worker to balance the cost of rejecting the current o�er and

the likelihood of receiving a better o�er in the future. As a result, an early exploding o�er is

more easily accepted than an early open o�er, and thus the market is more likely to unravel

when exploding o�ers are allowed. In addition, I identify the su�cient conditions under which

an equilibrium without unraveling never exists, and the su�cient and necessary condition for

the market to fully unravel.

The above results indicate that the use of exploding o�ers is only a necessary but not a

su�cient condition for unraveling to occur.2 An important question we should ask is what

characteristics of a market can make it less likely to be a�ected by exploding o�ers? This study

highlights two �ndings on comparative statics. First, a market tends to be less vulnerable when

there is an excess supply of labor, that is, when workers outnumber job vacancies in the market.

In this case, low quality workers remain unmatched in an equilibrium without unraveling, and

a �rm incurs the risk of hiring these workers by moving before the resolution of uncertainty.

Therefore, the �rm may be unwilling to deviate even when an early exploding o�er would be

accepted. Similar intuitions are also present in Niederle, Roth, and Ünver (2013), in which

they �nd unraveling tends to occur in a market with comparable demand and supply.3

Second, signal accuracy has an ambiguous e�ect on how vulnerable a market is to exploding

2In a di�erent environment, Fainmesser (2013) also shows that the use of exploding o�ers is a necessary
condition for unraveling to occur.

3On a related note, Niederle and Roth (2003) suggest that the unraveling in the gastroenterology market
might have been triggered by a demand shock. McKinney, Niederle, and Roth (2003) conduct an experimental
research on demand and supply imbalances tailored to this market.
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o�ers; the conclusion depends on the speci�c information structure. As mentioned above, in

the �rst period, market participants only observe a signal suggesting each worker's potential

quality or type. As the signal becomes more accurate, a �rm is more willing to make an early

exploding o�er to a high type worker while the worker is less willing to accept; a �rm is less

willing to make an early exploding o�er to a low type worker while the worker is more willing

to accept. In other words, the early moving incentives always change in opposite directions for

di�erent sides of the market. The overall e�ect of signal accuracy hinges on how uncertainty

is resolved in a speci�c market. Under the same framework, I show that opposite e�ects can

be produced by simply altering the information structure of the market.

Such a �nding reconciles the di�erent conclusions from two previous studies. Roth and Xing

(1994) �nd that unraveling tends to be impeded if the uncertainty in early stages is su�ciently

large, while a non-monotonic relationship is shown in Fainmesser (2013): an increase in signal

accuracy generates greater market unraveling when the signal is inaccurate enough, while the

e�ect reverses for a market with an accurate signal. This paper suggests that the information

structure is a key element that can a�ect the comparative statics on signal accuracy.

Given the facilitating e�ect of exploding o�ers on early transactions, a natural policy

consideration is whether exploding o�ers should be allowed in a market. I investigate the

welfare aspect by asking the following questions. Suppose there is a proposal on a ban towards

exploding o�ers. Who would support? Who would oppose? The result indicates that such a

banning policy can be supported by high quality �rms and workers but opposed by agents of

lower qualities. This provides a theoretical support for the experimental �ndings in Niederle

and Roth (2009). In their exploding o�er treatment, some higher (lower) quality �rms and

workers receive signi�cantly lower (higher) payo�s than in the open o�er treatment. The

conclusion also explains the prevalence of exploding o�ers in practice and why it is sometimes

di�cult to achieve consensus on how to solve the unraveling problem in real markets.4

The basic model is then extended into three periods. A comparison between exploding of-

fers of di�erent time limits indicates a continuation in the e�ects: in a market with exploding

o�ers of shorter time limits, the equilibrium without unraveling is less likely to sustain. More-

over, by allowing concavity (convexity) in quality distributions, the extended model shows

that a market is less likely to be a�ected by exploding o�ers if the quality distribution over

�rms is more convex, or that over workers is more concave.

Besides the use of exploding o�ers and the market characteristics discussed above, the

previous literature has identi�ed several other factors that could a�ect unraveling, includ-

ing the stability of centralized matching algorithms (Roth, 1984, 1991; Kagel and Roth,

2000; Ünver, 2001, 2005), market congestion (Roth and Xing, 1997), the quality distribu-

tion over participants on each side (Niederle, Roth, and Ünver, 2013), similarity of preferences

4For example, see a discussion regarding the US market for new gastroenterologists by Niederle and Roth
(2005).

3



(Haªaburda, 2010), social network structures (Fainmesser, 2013), and strategic complemen-

tarities (Echenique and Pereyra, 2016). The motives behind unraveling are also investigated

in some di�erent environments. Under the framework of competitive markets, Li and Rosen

(1998), Li and Suen (2000, 2004), and Suen (2000) show how unraveling can occur as a form of

insurance in the absence of complete markets. In a model with asymmetric information, but

without evolving uncertainty, Lee (2009) explains early contacting as a way to avoid adverse

selection.

The subsequent analysis proceeds as follows. Section 2 describes the model. Section 3

provides the equilibrium predictions. In Section 4, I give a simple welfare analysis and discuss

some policy issues. Some extensions are examined in Section 5, and Section 6 concludes.

2 The Model

Consider a two-sided matching market with F �rms and W workers, where F ≥ 3 and W ≥ 3.

Let F = {f1, ..., fF } be the set of �rms, and W = {w1, ..., wW } be the set of workers. Each

�rm has the capacity to hire at most one worker, and each worker can work for at most one

�rm. A market with W < F (or W > F ) is said to have excess demand (or excess supply) of

labor.

All workers agree on the same ranking of �rms: fF � fF−1 � ... � f1, and all �rms agree

on the same ranking of workers: wW � wW−1 � ... � w1.5 The ranking of �rms is common

knowledge to the entire market. The true ranking of workers is revealed over time. Let R be

the set of all possible strict rankings of workers, in which each ranking/state is realized with

equal probability 1
W ! . Denote the true ranking/state as �∈ R.

In terms of utility, all �rms value a match with the i-th ranked worker in the true state (wi)

as vi = i, and all workers value a match with the j-th ranked �rm (fj) as uj = j. Unmatched

market participants derive zero utility: v0 = u0 = 0.6 Therefore, any match is preferable to

remaining unmatched. Notice in this setting, a �rm's utility from a match depends only on

the worker's rank, and a worker's utility depends only on the �rm's rank. The two functions

vi and uj indicate worker quality and �rm quality respectively.7

The outcome of a matching market, that is, a matching is said to be stable if and only if

there is no worker��rm pair in which each prefers one another to her current match. Since

the existence of such pairs often leads to costly rematching procedures afterwards, stability is

used as a central criterion to evaluate market outcomes by the two-sided matching literature.

5Haªaburda (2010) considers the similarity of �rms' preferences over workers as a comparative statics pa-
rameter while having all workers agree on the same ranking of �rms. The result shows that similarity of
preferences is an important factor driving unravelling.

6Normalizing the utility range to be between 0 and 1 would not change the main results of the paper.
7An example that allows non-linear utility distributions can be found in Section 5. On a related note,

Niederle, Roth, and Ünver (2013) show in a lab experiment that unraveling only occurs when demand and
supply are comparable, that is, when there exist excess workers, but a shortage of high quality workers.
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In the current environment with strict rankings and aligned preferences, it is easy to see that

the assortative matching in the true state � constitutes the unique stable matching.

The market lasts for two hiring periods, with the true ranking � revealed in Period 2.

At the beginning of Period 1, a public signal �̂ ∈ R is observed by both �rms and workers.

With probability α, �̂ is the same as �. Otherwise, �̂ is a uniform random draw from R.
The parameter α ∈ (0, 1) measures signal accuracy: a larger value of α indicates a smaller

uncertainty faced by the market. Denote a worker's type in Period 1 as r̂, which is her rank

in �̂. Denote a worker's true rank as r, which is her rank in �.
The game proceeds as follows. In Period 1, a public signal �̂ is observed. Next, each �rm

simultaneously makes an o�er to at most one worker. Finally, each worker simultaneously

chooses at most one o�er to accept from those available to her. A similar procedure takes

place in the second period, except that the true ranking of workers �, instead of a signal, is

observed at the beginning of the period. All actions of �rms and workers are publicly observed.

I focus my discussion on two types of o�ers: exploding o�ers and open o�ers.

De�nition 1. An exploding o�er is an o�er that comes with a time limit. It can only be

accepted within the time limit. Otherwise, it is rejected.

De�nition 2. An open o�er is an o�er that can be held until the last period.

In the current two-period model, an exploding o�er has to be accepted immediately, in the

same period in which it is made. However, if a worker receives an open o�er in the �rst period,

she could choose to hold it until Period 2. An open o�er made in Period 2 is equivalent to an

exploding o�er.

Regarding the culture or norms of the market, I make the following two assumptions.

Assumption 1. (Binding acceptances) Once a worker accepts an o�er, the acceptance is

binding. A worker cannot renege on her acceptance.

Assumption 2. (Binding rejections) Once a worker rejects an o�er, the rejection is binding.

A �rm will not make an o�er to the same worker again.

Following Niederle and Roth (2009), Assumption 1 is made to ensure the validity of ex-

ploding o�ers. Assumption 2 is an important and reasonable addition because (i) it re�ects

the norms of some real-life two-sided matching markets such as the market for judicial clerks;

(ii) it increases the power of exploding o�ers by raising workers' rejection costs. Hence, with-

out such an assumption, the e�ects of exploding o�ers on market outcomes can be largely

underestimated.8

8The reality in some markets is less stringent than Assumption 2. For example, in the job market for junior
economists, although when rejecting an exploding o�er, a candidate typically does not consider the possibility
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3 Equilibrium Analysis

In this section, I start with a baseline case where �rms can only make open o�ers, and then

relax the constraint by allowing exploding o�ers. The discussion mainly concerns two types

of subgame perfect Nash equilibria in weakly undominated pure strategies: those without

unraveling, and those with full unraveling.

The following characterization of equilibria focuses on the timing of o�ers made by �rel-

evant� �rms, which include all �rms as W ≥ F and only �rms fF , fF−1,..., and fF−W+1 as

W < F . This is because in either type of equilibria, fF−W , fF−W−1, ..., and f1 as W < F

are indi�erent among all possible strategies and their actions do not a�ect the equilibrium

outcome.

De�nition 3. An equilibrium without unraveling is an equilibrium where no relevant �rms

make any o�ers until the last period.

In an equilibrium without unraveling, no actions are taken by relevant �rms in Period 1.

In Period 2, two cases are considered separately: (i) when W ≥ F , fF makes an o�er to wW ,

fF−1 to wW−1, ..., f1 to wW−F+1, and all o�ers are accepted; (ii) when W < F , fF makes an

o�er to wW , fF−1 to wW−1, ..., and fF−W+1 to w1, and all these o�ers are accepted.

De�nition 4. An equilibrium with full unraveling is an equilibrium where every relevant �rm

makes an early o�er in Period 1.

In an equilibrium with full unraveling, after �̂ is revealed in Period 1, two cases are

considered separately: (i) whenW ≥ F , fF makes an o�er to type r̂ = W , fF−1 to r̂ = W −1,

..., f1 to r̂ = W − F + 1, and all o�ers are accepted; (ii) when W < F , fF makes an o�er to

type r̂ = W , fF−1 to r̂ = W − 1, ..., fF−W+1 to r̂ = 1, and all these o�ers are accepted.

In both types of equilibria, when W < F , �rms fF−W , fF−W−1, ..., and f1 may adopt any

strategy; their o�ers (if made) are not accepted by any workers. Clearly, the unique outcome

of equilibria without unraveling is the assortative matching according to the true ranking of

workers �, which is the unique stable matching in the current setting. The unique outcome

of equilibria with full unraveling is the assortative matching according to the signal-suggested

ranking of workers �̂, which is only stable when the signal is correct.

In addition, an equilibrium is said to have partial unraveling if some relevant �rms make

o�ers in Period 1, and some make o�ers in Period 2.

that she may receive an o�er from the same employer again, the phenomenon of nonbinding rejections is still
observed in some situations. In this case, a more realistic setting is to have each �rm decide whether to raise
its leverage by attaching a commitment of binding rejection when making an early exploding o�er. For these
markets, although Assumption 2 signi�cantly simpli�es the analysis, it can lead to an overestimation of the
e�ects of exploding o�ers.
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3.1 Open O�ers Only

Consider the case where �rms can only make open o�ers due to the culture, norms, or policies

in a market environment.9 The following proposition describes the equilibrium outcome.

Proposition 1. When �rms are not allowed to make exploding o�ers, there only exist equilibria

without unraveling; the stable matching is the unique equilibrium outcome.

While the full proof is provided in the appendix, the basic intuition is clear. In Period

1, every type of worker has a positive probability of having the highest quality in the true

state. Therefore, as long as the best �rm fF moves in Period 2, a worker strictly prefers to

hold any early open o�er until Period 2. Knowing this, fF strictly prefers to wait until the

last period, so that all workers will stay in the market and the one of the highest quality can

be perfectly identi�ed. Since no o�er is accepted in Period 1, the other �rms cannot make

themselves better o� by moving early; instead, they incur the risk of being rejected in the last

period and remaining unmatched.

Proposition 1 shows that in a market where �rms only use open o�ers, an equilibrium

without unraveling always exists, while an equilibrium with full unraveling never does. This

provides us with a very clean baseline, so that the e�ects of exploding o�ers can be easily

identi�ed from the change in the parameter spaces supporting these two types of equilibria.

3.2 Exploding and Open O�ers

Now I consider the case where both open o�ers and exploding o�ers can be made in a market.

Lemma 1. In an equilibrium in undominated strategies, �rms fF−1, fF−2, ..., and f1 never

make an open o�er in Period 1 when they are allowed to make exploding o�ers.

The best �rm fF is indi�erent between an open o�er and an exploding o�er since neither

of them will be rejected by any worker. In Period 2, every �rm is indi�erent because an open

o�er is equivalent to an exploding o�er. Hence, in the subsequent analysis of equilibria in

weakly undominated strategies, Lemma 1 allows us to consider only exploding o�ers without

loss of generality.

After observing a signal �̂in Period 1, both �rms and workers update their beliefs. Poste-

riors on the true state � are given by

Pr(�̂ | �̂) = α+
1− α
W !

,

9For example, exploding o�ers are publicly discouraged in the US market for new graduate students. The
Council of Graduate Schools has published a resolution stating that students are under no obligation to respond
to o�ers of �nancial support prior to April 15 (http://cgsnet.org/april-15-resolution).
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and

Pr(�′| �̂) =
1− α
W !

, ∀ �′ 6= �̂.

Posteriors on the true rank r of a type-r̂ worker are given by

Pr(r̂ | r̂) = α+
1− α
W

,

and

Pr(r′ | r̂) =
1− α
W

, ∀r′ 6= r̂.

The posteriors described above involve a spike at the point �̂, which indicates a high

probability of the true state being the signal-suggested ranking, and an equally low probability

of any other ranking being realized.10 Therefore, the assortative pairs in the state �̂ will be

frequently used in the subsequent analysis. These �signal-suggested pairs� are formally de�ned

as follows.

De�nition 5. The signal-suggested type of a �rm fj is a function de�ned as

r̂(j) ≡

j +W − F if j > F −W,

0 if j ≤ F −W.

The signal-suggested �rm of a type r̂ is a function de�ned as

j(r̂) ≡

r̂ −W + F if r̂ > W − F,

0 if r̂ ≤W − F.

A �rm and its signal-suggested type, or a type of worker and its signal-suggested �rm, are

called a signal-suggested pair.

3.2.1 Equilibria without Unraveling

As mentioned in the introduction, in practice not all markets that use exploding o�ers su�er

from unraveling. Proposition 2 provides su�cient conditions for an equilibrium without un-

raveling to sustain even when exploding o�ers are allowed in a market, while Proposition 3

provides su�cient conditions for such an equilibrium never to exist.

Recall a market with W < F (or W > F ) is said to have excess demand (or excess supply)

of labor. I further identify the case of extreme excess supply if W ≥ 2F , and the case of

moderate excess supply if F < W ≤ 2F − 1.

10In Section 3.3, I provide an example of a di�erent information structure, under which the probability of a
ranking gradually decreases as its Kendall τ distance to the signal-suggested ranking increases.
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Proposition 2. When �rms are allowed to make exploding o�ers, an equilibrium without

unraveling always exists if

(i) the market has an extreme excess supply of labor; or

(ii) the market has a moderate excess supply of labor and a su�ciently inaccurate signal.

Mathematically speaking, an equilibrium without unraveling always exists if (i) W ≥ 2F ,

or (ii) F + 2 < W ≤ 2F − 1 and α ≤ (W−F )2−W+F−2
(W−F )2+W+F−2 . A deviation from such an equilibrium

involves both sides of the market: a �rm should want to make an early exploding o�er in

Period 1 to a worker who wants to accept it. Hence, the condition for an equilibrium without

unraveling to sustain requires that, for each worker type r̂, the �rms whose o�ers would be

accepted should not be willing to o�er. In most cases, the signal-suggested �rm-worker pairs

have the strongest incentive to deviate, thus a�ecting the binding constraint that drives the

results in Proposition 2. Below I use an example to explain why.

Example 1. In a market with 3 �rms and 3 workers, an equilibrium without unraveling yields

the following assortative matching:

w3 w2 w1

f3 f2 f1
.

Consider a deviation between f2 and a worker of type r̂ = 3. Given the posteriors on this type

in Period 1, the o�er will be accepted if 2 ≥
(
α+ 1−α

3

)
× 3 + 1−α

3 × 1 + 1−α
3 × 1. While the

LHS gives the worker's utility when accepting the o�er, the RHS is the worker's expected utility

when rejecting. The second part of the RHS indicates a rejection cost of 1−α
3 : after rejecting

f2, the worker can only receive an o�er from f1 even when her true rank turns out to be r = 2

in Period 2. On the other hand, if f2 makes an early o�er to its signal-suggested type r̂ = 2,

the o�er will be accepted when 2 ≥ 1−α
3 × 3 +

(
α+ 1−α

3

)
× 1 + 1−α

3 × 1. Again, the second part

of the RHS indicates a rejection cost of
(
α+ 1−α

3

)
.

Example 1 shows that a deviation between a signal-suggested pair tends to succeed more

easily: although a �rm always prefers higher types, its signal-suggested type is more likely to

accept its early o�er due to the higher rejection cost (α+ 1−α
3 > 1−α

3 ). This is quite intuitive

since it indicates that a worker is more reluctant to reject what appears to be �a good match�

in Period 1 � a �rm that is most likely to be her match in a stable matching. Therefore, for

an equilibrium without unraveling to sustain, the binding condition in most cases requires the

best �rm that would be accepted by its corresponding type not be willing to o�er.

Condition (ii) of Proposition 2 is mainly driven by the workers' side of the market. As

the signal in Period 1 becomes less accurate, the cost of rejecting a signal-suggested �rm(
α+ 1−α

3

)
, or more generally,

(
α+ 1−α

W

)
decreases. Thus, a worker is more likely to reject an

9



exploding o�er and an equilibrium without unraveling is more likely to sustain.11 On the other

hand, condition (i) stems from a boundary solution on the �rms' side, in which case no �rm is

willing to make an early o�er to its signal-suggested type even if it is always accepted. It arises

when there is an extreme excess supply of labor (W ≥ 2F ), which means in an equilibrium

without unraveling, even the worst �rm f1 is matched with an above-average worker. This

signi�cantly increases a �rm's risk in making an o�er before the resolution of uncertainty since

the worker is more likely to have a lower quality compared to the �rm's match in equilibrium.

Proposition 3. When �rms are allowed to make exploding o�ers, an equilibrium without

unraveling never exists if

(i) the market has an excess demand of labor and a su�ciently accurate signal; or

(ii) the market has a moderate excess supply of labor and a su�ciently accurate signal.

Mathematically speaking, an equilibrium without unraveling never exists if (i)W ≤ F and

α > W−1
2W−1 , or (ii) F < W < 2F − 1 and α > (W−F )2+W+F−2

(W−F )2+3W+F−2 . For a deviation to occur, there

must exist a type of worker and a �rm in Period 1 such that, the �rm is willing to o�er and

the worker is willing to accept. Again, the binding condition here hinges on the deviations

between signal-suggested pairs. Proposition 3 shares the similar intuition with Proposition 2:

a more accurate signal encourages a deviation by increasing the worker's rejection cost, while

an excess demand of labor decreases the �rm's risk of being worse o� in a deviation.

(a) A Su�cient Condition for the Existence of an Equilibrium Without Unraveling

(b) A Su�cient Condition for the Non-existence of an Equilibrium Without Unraveling

Figure 1: An Integer Problem

11Although the cost of rejecting a non-signal-suggested �rm 1−α
W

increases as the signal becomes less accurate,
here the elimination of such a deviation is not the binding condition and does not drive the results. In Section
3.3, I provide an example with a di�erent information structure, under which the non-signal-suggested pairs
can also in�uence the binding condition, and thus signal accuracy may have the opposite e�ect on market
unraveling.
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There exists a gap between the two parameter spaces identi�ed in Propositions 2 and

3. Let α1 and α2 be functions of W and F such that α1(W,F ) ≡ (W−F )2−W+F−2
(W−F )2+W+F−2 and

α2(W,F ) ≡ (W−F )2+W+F−2
(W−F )2+3W+F−2 . For some cases of moderate excess supply (F+2 < W < 2F−1),

an equilibrium without unraveling always exists when α ≤ α1 and never exists when α > α2.

It is easy to con�rm that α1 < α2.

Such a gap is due to an integer problem, which makes conditions in Propositions 2 and 3

su�cient but not necessary. Denote jA as the lowest quality �rm whose early o�er is accepted

by its signal-suggested type and jO as the highest quality �rm willing to make such an o�er

given the acceptance. For an equilibrium without unraveling to exist, a su�cient and necessary

condition only requires no integer to be in the range between jA and jO, which depends on

the speci�c parameter values of α, W , and F . In order to draw a general conclusion, we

need to have the range completely empty, that is, jA ≥ jO (Figure 1a). Similarly, although

an equilibrium without unraveling does not exist as long as there is an integer in the range

between jA and jO, for a general conclusion, we need to set the range larger than 1, that is,

jO − jA > 1 (Figure 1b).

For cases within the gap, whether unraveling will occur depends on the speci�c values of

α, F , and W . To illustrate, I provide the following examples where F + 2 < W < 2F − 1 and

α ∈ (α1, α2]. An equilibrium without unraveling exists in case (1) but not in case (2).

Example 2. (1) When α = 0.51, F = 5, and W = 8, there does not exist an equilibrium

without unraveling: given jA ≈ 0.7 and jO = 1.5, we know that the signal-suggested pair f1

and r̂ = 4 has an incentive to deviate.

(2) When α = 0.51, F = 7, and W = 12, an equilibrium without unraveling can sustain

since there is no integer between jA ≈ 1.2 and jO = 1.5.

3.2.2 Equilibria with Full Unraveling

Now we discuss an extreme case, where the market fully unravels with every relevant �rm

making an exploding o�er in Period 1.12

Proposition 4. When �rms are allowed to make exploding o�ers, an equilibrium with full

unraveling exists if and only if W ≤ F and α ≥ W−2
W , that is, the market has an excess

demand and a su�ciently accurate signal.

When W > F , an equilibrium with full unraveling can never sustain because after Period

1, there are W − F workers left in the market. Then every �rm has an incentive to deviate

by waiting, in which case it becomes the only available �rm in Period 2 and its choice set is

expanded by W − F workers after the resolution of uncertainty. When W ≤ F , however, a

�rm has no incentive to wait as long as in its deviation, no worker would reject an o�er from

12Recall that relevant �rms include all �rms as W ≥ F , and only �rms fF , fF−1,..., and fF−W+1 as W < F .
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her signal-suggested �rm and become available in Period 2. With a more accurate signal, it is

more costly for a worker to reject her o�er in equilibrium, and thus a deviation is less likely

to occur.

3.2.3 Equilibria with Partial Unraveling

In an equilibrium with partial unraveling, only some of the relevant �rms make o�ers in Period

1, while the others choose to wait until Period 2. In contrast to the previous two types of

equilibria, partial unraveling may take various forms. In this section, I �rst rule out some

impossible structures of such equilibria, and then demonstrate some possibilities in examples.

Remark 1. There cannot exist an equilibrium with partial unraveling where every �rm that

moves early has a higher quality than all the �rms that choose to wait.

For example, with three �rms in a market, there cannot exist an equilibrium with f3, or

f3 and f2 being the only early moving �rm(s). Such a structure cannot sustain because there

exists a pro�table deviation for every early moving �rm in equilibrium: by deviating to Period

2, it becomes the highest quality �rm with an expanded choice set after the resolution of

uncertainty.

Combining Propositions 3 and 4, we can identify two parameter spaces where neither an

equilibrium without unraveling nor an equilibrium with full unraveling exists: (i) F < W <

2F − 1 and α > (W−F )2+W+F−2
(W−F )2+3W+F−2 ; (ii) 4 ≤ W ≤ F and W−1

2W−1 < α < W−2
W . Only equilibria

with partial unraveling may exist in these cases. However, as shown in the following example,

for some values of W , F , and α, there does not exist any equilibrium.

Example 3. Suppose there are 4 workers and 3 �rms in the market.

(1) When α ∈ (37 ,
5
11 ], there only exists the following equilibrium: in Period 1, f2 makes

an exploding o�er to type î = 4 and f1 makes an exploding o�er to type î = 2; in Period 2, f3

makes an o�er to the best worker left in the market; all o�ers are accepted.

(2) When α ∈ ( 5
11 ,

1
2), there does not exist any equilibrium.

(3) When α ≥ 1
2 , there only exist the following two equilibria. (i) In Period 1, f1 makes

an exploding o�er to type î = 2; in Period 2, f3 makes an o�er to the best worker left in the

market and f2 makes an o�er to the second best; all o�ers are accepted. (ii) In Period 1, f2

makes an exploding o�er to type î = 3 and f1 makes an exploding o�er to type î = 2; in Period

2, f3 makes an o�er to the best worker left in the market; all o�ers are accepted.

The above example provides us with some interesting intuitions. In case (1), the highest

type worker î = 4 in Period 1 is �stolen� by an early moving �rm f2. But since the signal

is not accurate enough, the best �rm f3 still prefers to wait for the resolution of uncertainty.

In case (2), as the signal becomes more accurate, î = 4 becomes more attractive but is still

willing to accept an early o�er from f2. As a result, f3 is forced to move early as well so as to
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prevent such an early transaction; the equilibrium in case (1) can no longer sustain. In case

(3) with an even more accurate signal, î = 4 is no longer willing to accept f2 in Period 1; both

the highest type worker and the highest quality �rm choose to wait. Clearly, in the analysis

of equilibria with partial unraveling, signal accuracy plays an important role in determining

how or whether the early moving incentives for one �rm are a�ected by early o�ers of other

�rms, because it tells the high quality �rms whether it is worthwhile to ��ght� for workers of

high types.

3.3 The Ambiguous E�ect of Signal Accuracy

According to the above analysis, exploding o�ers has a facilitating e�ect on early transactions;

such an e�ect tends to be less salient in a market with an excess supply of labor or a less

accurate signal. In this section, I provide an example to show that signal accuracy may have

an opposite in�uence under a di�erent information structure.

Example 4. There are three workers in the market. Recall R is the set of all possible strict

rankings of workers. The Kendall τ distance, denoted as K(�′,�′′), is a function that counts

the number of pairwise disagreements between two rankings �′ and �′′, ∀ �′,�′′∈ R. In

other words, K(�′,�′′) measures the distance between �′ and �′′.13 For instance, between two

rankings of three workers, K(w1 � w2 � w3, w1 � w3 � w2) = 1, K(w1 � w2 � w3, w3 �
w1 � w2) = 2, while K(w1 � w2 � w3, w3 � w2 � w1) = 3.

The signal �̂ in Period 1 equals a ranking �′ with probability 1
6 [1 + 3β − 2βK(�′,�)] , ∀ �′∈

R, which is decreasing in the distance between �′ and the true state �. The parameter

β ∈ (0, 13) measures signal accuracy: a larger value of β indicates a smaller uncertainty faced

by the market. The posteriors are thus given by

Pr(�=�′| �̂) =
1

6

[
1 + 3β − 2βK(�′, �̂)

]
∀ �′∈ R.

That is, the probability of a ranking being the true state gradually decreases as its distance to

the signal �̂ increases. This is di�erent from the single spike at �̂ in the posteriors described

in Section 3.2.

Consider the simple case with three �rms. An equilibrium without unraveling exists if and

only if β ≥ 1
4 . This result stems from the binding condition that prevents a worker of type

î = 3 from accepting f2 in Period 1, with f2 always willing to make such an exploding o�er if

accepted. In contrast to Proposition 2, here the condition puts a lower bound to signal accuracy,

that is, it requires the signal to be su�ciently accurate for the market not to unravel.

The intuition lies in the di�erences between the two information structures. The posteriors

described in Section 3.2 put a high probability on the signal-suggested ranking, and an equally

13See Kendall (1938) and Kemeny (1959).
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low probability on any other ranking. As a result, the binding condition for no unraveling

mainly concerns the deviations between signal-suggested pairs. In such a pair, a more accurate

signal increases the worker's rejection cost without a�ecting the �rm's early moving incentive

(given the worker's acceptance of its early exploding o�er).14 Overall, a more accurate signal

makes the market more vulnerable to the use of exploding o�ers. Under the information

structure in Example 4, however, non-signal-suggested pairs can also in�uence the binding

condition. For these pairs, as the signal becomes more accurate, a high type worker in Period

1 becomes more attractive; �rms are more willing to make an early exploding o�er while the

worker is less willing to accept. Meanwhile, a low type worker becomes less attractive; �rms

are less willing to o�er while the worker is more willing to accept. In other words, the early

moving incentives always change in opposite directions for di�erent sides of the market. Then

in certain cases such as Example 4, when the binding condition prevents a high type worker

from accepting a non-signal-suggested �rm, the existence of an equilibrium without unraveling

requires the signal to be su�ciently accurate. In contrast to the predictions in Section 3.2.1,

here a more accurate signal can make a market less likely to be a�ected by exploding o�ers.

The above analysis suggests that the e�ect of signal accuracy may hinge on how uncertainty

is resolved in a speci�c market, which is di�erent from the prediction of Roth and Xing (1994).

Like the basic model of this paper, their model indicates a de�nitive e�ect: unraveling tends

to be impeded if the uncertainty in early stages is su�ciently large, that is, if the signal

is inaccurate enough. However, Example 4 provides an information structure under which

unraveling can be facilitated by a su�ciently inaccurate signal.

4 Welfare Analysis

Knowing that the use of exploding o�ers tends to facilitate unraveling and that unraveling

hurts the stability of two-sided matching markets, a natural policy consideration is whether

a market should allow �rms to make exploding o�ers. In this part, I investigate the welfare

aspect by asking the following questions. Suppose there is a proposal on a ban towards

exploding o�ers. Who would support? Who would oppose? In Section 3, I have identi�ed two

types of equilibria that are of the most interest in this environment: those without unraveling,

and those with full unraveling. A comparison between these two types of equilibria can shed

some light on these questions.

Suppose W , F , and α are such that 4 ≤ W ≤ F and α ≥ W−2
W . According to previous

results, when exploding o�ers are banned from the market, the market does not unravel

(Proposition 1); when exploding o�ers are allowed, the market always unravels (Proposition

14See equations (14) and (16) in the appendix for the expressions of jA (the lowest quality �rm whose early

o�er is accepted by its signal-suggested type) and jO (the highest quality �rm willing to make such an o�er
given the acceptance) respectively. Signal accuracy α only enters the former but not the latter.
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3) and an equilibrium with full unraveling exists (Proposition 4).

Comparing to the assortative matching, fj is better o� in a fully unraveled market if

j +W − F < α (j +W − F ) +
(1− α) (W + 1)

2
, (1)

where j = F −W + 1, F −W + 2, ..., F .15 That is,

W − F + 1 ≤ j < ĵ ≡ 2F −W + 1

2
. (2)

From W ≤ F , we have
ĵ ≥ F + 1

2
. (3)

The LHS of (1) is fj 's payo� in an equilibrium without unraveling, since it is matched with

worker wj+W−F . In an equilibrium with full unraveling, fj is matched with its signal-suggested

type r̂(j) = j + W − F . The RHS gives the expected payo�. The function ĵ is de�ned as

the cuto� �rm.16 Firms ranked lower than ĵ are better o� (or indi�erent) in full unraveling,

while those ranked higher are worse o�. Inequality (3) indicates that full unraveling tends to

bene�t medium or low quality �rms while hurting high quality �rms.

On the workers' side, wi is better o� in full unraveling if

i−W + F < α (i−W + F ) + (1− α)

[
(W + 1)

2
−W + F

]
, (4)

or equivalently,

i < î ≡ W + 1

2
. (5)

The LHS of (4) is wi's payo� in an equilibrium without unraveling, since it is matched with

�rm fi−W+F . In an equilibrium with full unraveling, wi is matched with �rm j(r̂) = r̂−W+F ,

which depends on her type r̂ in Period 1. The RHS gives the expected payo�. The function î

is de�ned as the cuto� worker, which suggests that full unraveling tends to bene�t low quality

workers while hurting high quality workers.

Now we consider a banning policy on exploding o�ers. Suppose every participant holds

the common belief that the market does not unravel if exploding o�ers are banned but fully

unravels if they are allowed. Then clearly such a policy will be supported by high quality

�rms and workers, and opposed by �rms of low or medium qualities and workers of low

qualities. Similar conclusion is drawn from the experimental results in Niederle and Roth

(2009). They �nd that while early matches are costly for the highest quality �rms and workers,

some lower quality �rms and applicants tend to gain from them. The conclusion also explains

15Firms f1, f2, ..., fF−W are indi�erent since they are unmatched in both cases.
16There is an abuse of language here since ĵ is not necessarily an integer.
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the prevalence of exploding o�ers in practice and why it is sometimes di�cult to achieve

consensus on how to solve the unraveling problem in real markets (Niederle and Roth, 2005).

5 Extensions

In a three-period model, I explore whether exploding o�ers of di�erent time limits may have

di�erent e�ects on market unraveling. Moreover, a di�erent information structure is adopted

and a new set of parameters is discussed: the concavity (convexity) of quality distributions

over workers and �rms.

In the market, there are three �rms and three workers with aligned preferences: f3 �
f2 � f1 and w3 � w2 � w1. Their qualities are distributed as the following. Firms value a

match with worker wi as vi: v3 = 1, v2 = v, and v1 = v
2 ; workers value a match with �rm

fj as uj : u3 = 1, u2 = u, and u1 = u
2 , where u ∈ [0, 1] and v ∈ [0, 1]. Unmatched market

participants derive zero utility: v0 = u0 = 0. Thus, a larger v (u) indicates a more concave

quality distribution over workers (�rms).

Similar to the basic model, let Θ be the set of all possible strict rankings of workers, in

which each ranking/state is realized with equal probability 1
6 . Denote the true state as θ ∈ Θ.

The market lasts for three periods. The true state θ is revealed in Period 3. At the beginning

of Period t, a public signal st is observed by both sides, t = 1, 2. The public signal now takes

form of a worker's �name�. If a worker named �i� is ranked r in the true state, denoted as

θr = i, the probability of the signal being i is given by Pr [st = i | θr = i] = r
6 . The name of a

higher-ranked worker in the true state is more likely to be the signal, and the probabilities of

all ranks sum up to 1. Two signals s1 and s2 are independent.

In addition to the exploding o�ers that have to be accepted within the same period (denoted

as D = 0), this three-period model allows us to analyze the ones that can be held for one

period (denoted as D = 1). Within such a time limit, the information evolves into a di�erent

status. The following two propositions discuss the equilibrium without unraveling. Recall by

Proposition 1, in a market with only open o�ers, such an equilibrium is supported by the entire

parameter space: u ∈ [0, 1] and v ∈ [0, 1]. Proposition 5 gives the supporting parameter space

when there are no constraints on exploding o�ers (both D = 0 and D = 1 are allowed), while

Proposition 6 investigates the market where exploding o�ers can only come with a longer time

limit (D = 1 is allowed but not D = 0).

Proposition 5. When there are no constraints on exploding o�ers, the equilibrium without

unraveling exists under one of the following conditions: (1) u ∈ [0, 1033 ]; (2) u ∈ (1033 ,
4
11 ] and

v ∈ [1023 , 1]; (3) u ∈ ( 4
11 ,

18
31 ] and v ∈ [ 6

11 , 1]; (4) u ∈ (1831 ,
18
23 ] and v ∈ [1823 , 1]; (5) u ∈ (1823 ,

4
5 ] and

v ∈ [1819 , 1].

Proposition 5 suggests the equilibrium without unraveling is more likely to sustain when u
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is small and v is big, which can be clearly seen in Figure 2. The light shaded area A illustrates

the parameter space supporting the equilibrium. As mentioned before, a deviation involves

both sides of the market: it requires that a �rm wants to make an early o�er to a worker who

wants to accept it. A smaller u means a more convex quality distribution over �rms. Then

the top �rm is more worth waiting because it is much better than the rest. Thus, an early

o�er is less likely to be accepted, and a deviation is less likely to succeed. On the other hand,

when v is bigger, the quality distribution over workers is more concave. Then the competition

for higher-ranked workers becomes less �erce, and an early o�er is less likely to be made. A

similar intuition is re�ected in the following proposition.

Figure 2: The Equilibrium Without Unraveling

Proposition 6. When exploding o�ers that have to be accepted within the same period are

not allowed, the equilibrium without unraveling exists under one of the following conditions:

(1) u ∈ [0, 1033 ]; (2) u ∈ (1033 ,
4
13 ] and v ∈ [1037 , 1]; (3) u ∈ ( 4

13 ,
18
31 ] and v ∈ [ 6

17 , 1]; (4) u ∈ (1831 ,
18
23 ]

and v ∈ [23 , 1]; (5) u ∈ (1823 , 1] and v ∈ [2833 , 1].

By comparing the two propositions above, we can see there exists a continuation in the e�ects

of exploding o�ers. When exploding o�ers with shorter time limits are allowed, an equilibrium

without unraveling is less likely to sustain. Such a result is illustrated in Figure 2. When there

are only open o�ers in market, the entire parameter space supports the equilibrium, which

shrinks to the shaded area (A and B) when exploding o�ers with longer time limits (D = 1)
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are allowed. Moreover, when the constraints on exploding o�ers are removed all together, it

shrinks further to the light shaded area A.

When exploding o�ers come with a longer time limit, a better strategy for a worker who

has received an early o�er is to hold it for one period, instead of responding right away. So

no deviation will take place in Period 2 given that such o�ers will always be held until the

last period. For the same reason, when a �rm considers making an o�er in Period 1, it has to

take into account the change of information status during Period 2 and calculate the expected

utilities. For example, when u ∈ (1831 ,
18
23), consider the deviation of f2 by making an o�er to

the worker whose name is in s1. The o�er will be rejected if s2 = s1, i.e., if two signals fall

on this same worker; but it will be accepted if s2 6= s1. Recall when making an exploding

o�er with D = 0, a �rm always knows whether it will be accepted or not. In contrast, when

workers are allowed to hold an o�er longer, �rms are taking on more risks in deviation. This

explains the result that unraveling is less likely to happen when the time limits of exploding

o�ers are longer.

6 Conclusion

Many two-sided matching markets tend to unravel in time with transactions occurring earlier

and earlier. Using a two-period decentralized model, this paper shows that when a market

culture allows �rms to make exploding o�ers, such unraveling is more likely to take place and

lead to an unstable matching due to the lack of information in the early stages.

An excess supply of labor makes a market less vulnerable to the presence of exploding

o�ers, while the e�ect of signal accuracy is ambiguous, depending on how uncertainty is

resolved in a market. Therefore, although exploding o�ers in general tends to facilitate early

transactions, it is only a necessary but not a su�cient condition for unraveling to occur. The

policy regarding exploding o�ers should be tailored to the speci�c environment of interest,

while taking into consideration such market characteristics as labor supply and demand and

information structure. More importantly, the welfare analysis in this paper indicates that a

ban towards exploding o�ers may bene�t high quality �rms and workers but hurt agents of

low qualities. This suggests the need for policymakers to balance the costs and gains when

addressing the unraveling problem in a market.

Admittedly, the model in this paper only provides a simple and tractable benchmark

for the analysis of exploding o�ers. Further extensions into environments like heterogeneous

preferences or asymmetric information may give us some additional insights regarding how the

use of exploding o�ers can a�ect the outcome of a matching market.
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Appendix: Proofs

Proof of Proposition 1

Proof. Consider a worker who has received an early open o�er from �rm fj (j = 1, 2, ..., F−1).

As long as a better �rm fj′ (j′ > j) moves in a later period in equilibrium, she strictly prefers

holding to accepting or rejecting the o�er right away.

Firstly, holding is preferred to accepting. By choosing to hold but not to accept, the worker

is strictly better o� if she receives a better o�er in a later period. If not, she is not worse

o� since she still has the open o�er from fj . Secondly, holding is preferred to rejecting. By

choosing to hold but not to reject, the worker is not worse o� if she receives a better o�er in

a later period; she is strictly better o� otherwise.

Knowing this, the best �rm fF strictly prefers to wait until the last period, so that all

workers will stay in the market and the one of the best quality can be perfectly identi�ed.

Since no o�er is accepted in Period 1, the other �rms cannot make themselves better o� by

moving early; instead, they incur the risk of being rejected in the last period and remaining

unmatched.

Hence, there always exist pro�table deviations from an equilibrium with partial or full

unraveling. Only an equilibrium without unraveling can sustain. It yields the assortative

matching according to the true ranking of workers �, which is the unique stable matching in

the current environment with strict rankings and aligned preferences.

Proof of Lemma 1

Proof. When making an o�er in Period 2, every �rm is indi�erent because an open o�er is

equivalent to an exploding o�er. Now consider an o�er in Period 1. The best �rm fF is still

indi�erent since neither an exploding o�er nor an open o�er will be rejected by any worker.

However, for other �rms, making an open o�er is never the strictly best response.

First, when making an exploding o�er that has to be accepted within the same period,

a �rm always knows whether it will be accepted. This is because there is no information

asymmetry in the current setting, and the information status remains the same within a

period.

Next, if an exploding o�er will be accepted, making an exploding o�er yields the same or

a higher payo� than making an open o�er. Suppose a �rm makes an open o�er in Period 1,

there are three possible responses: (i) it is accepted right away; (ii) it is held and accepted in

Period 2; (iii) it is held and rejected in Period 2. Compared to an exploding o�er, the �rm

yields the same payo� in cases (i) and (ii), but is strictly worse o� in case (iii).

Finally, if an exploding o�er will be rejected, waiting yields the same or a higher payo�

than making an exploding o�er or an open o�er. A �rm never wants to make an exploding
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o�er knowing it will be rejected because then it cannot make an o�er to the same worker

again. On the other hand, if a �rm makes an open o�er in Period 1, there are three possible

responses: (i) it is rejected right away; (ii) it is held and accepted in Period 2; (iii) it is held

and rejected in Period 2. Compared to waiting, the �rm is strictly worse o� in cases (i) and

(iii), and is weakly worse o� in case (ii).

Proof of Proposition 2

Proof. Below I �rst calculate the updated beliefs of �rms and workers after they observe a

signal in Period 1.

After observing a signal �̂, posteriors on the true state are given by

Pr(�̂ | �̂) =

[
α+ (1− α) 1

W !

]
1
W ![

α+ (1− α) 1
W !

]
1
W ! + (W !− 1)

[
(1− α) 1

W !

]
1
W !

= α+
1− α
W !

.

For any �′ 6= �̂,

Pr(�′| �̂) =
1− αW !+(1−α)

W !

W !− 1
=

1− α
W !

.

Posteriors on types are given by

Pr(r̂ | r̂) = Pr(�̂ | �̂) + [(W − 1)!− 1] Pr(�′| �̂)

= α+
1− α
W

,

and ∀r′ 6= r̂

Pr(r′ | r̂) =
1−

(
α+ 1−α

W

)
W − 1

=
1− α
W

.

Thus, the expected quality of a type-r̂ worker is

EV (r̂) =

(
α+

1− α
W

)
r̂ +

∑
r′ 6=r̂

1− α
W

r′ = αr̂ +
(1− α) (W + 1)

2
.

Next, consider the case where W > F . In an equilibrium without unraveling, no actions

are taken in Period 1. In Period 2, after � is revealed, fF makes an o�er to wW , fF−1 to

wW−1, ..., and f1 to wW−F+1. All o�ers are accepted.

It is clear that workers do not have any incentive to deviate, nor does �rm fF . Given all

others are playing the equilibrium strategy, a �rm fj with j = 1, 2, ..., F − 1 will not deviate

and make an o�er to a di�erent worker in Period 2, since it will not be accepted by a worker

better than its current match wj−F+W . I now focus on checking the deviation of fj in Period
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1. Such a deviation involves both sides of the market: a �rm should want to make an early

exploding o�er to a worker who wants to accept it. So a su�cient condition for the existence

of an equilibrium without unraveling is that, for each worker type r̂, the �rms whose o�er

would be accepted are not willing to o�er.

Suppose fj deviates by making an early o�er to a type-r̂ worker in Period 1, and r̂ 6= r̂(j).

The o�er is accepted if

j ≥
(
α+

1− α
W

)
× j(r̂) +

1− α
W

×

(
W∑

r′=W−F+1

j(r′)− j(r̂)

)
− 1− α

W
× 1, (6)

or equivalently,

j ≥ jA1 (r̂) ≡ α× (r̂ −W + F ) +
(1− α)

(
F 2 + F − 2

)
2W

. (7)

The function jA1 (r̂) is de�ned as the lowest ranked �rm that is accepted by type r̂. On the

other hand, if accepted, the �rm is willing to make such an o�er if

j +W − F ≤ EV (r̂), (8)

or equivalently,

j ≤ jO1 (r̂) ≡ αr̂ +
(1− α) (W + 1)

2
−W + F. (9)

The function jO1 (r̂) is de�ned as the highest ranked �rm that wants to make an early o�er to

type r̂. The su�cient condition for no deviation in this case is that for each type, there does

not exist a �rm that is willing to o�er, and is accepted. That is, ∀r̂, we need to have

jA1 (r̂) ≥ jO1 (r̂) and jO1 (r̂) ≥ 1, (10)

or

jO1 (r̂) < 1, (11)

which solves

W ≥ 2 + F. (12)

(10) ensures that there does not exist a j such that jA1 (r̂) ≤ j ≤ jO1 (r̂). (11) is a boundary

condition where no �rms are willing to make an o�er to a type-r̂ worker.17

Now we consider the deviation of a �rm fj to its signal-suggested type r̂(j). The o�er is

17Another boundary case would be that a type-r̂ worker does not accept any o�er, which never holds because
fF will always be accepted, that is, jA1 (r̂) < F, ∀r̂.
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accepted if

j ≥
(
α+

1− α
W

)
× j(r̂(j)) +

1− α
W

×

(
W∑

r′=W−F+1

j(r′)− j(r̂(j))

)
−
(
α+

1− α
W

)
, (13)

or equivalently,

j ≥ jA2 ≡
F 2 + F − 2

2W
− α

1− α
. (14)

If accepted, the �rm is willing to make such an o�er if

j +W − F ≤ EV (r̂(j)), (15)

or equivalently,

j ≤ jO2 ≡
1

2
+ F − W

2
. (16)

The su�cient condition for no deviation in this case is that there does not exist a �rm willing

to make an o�er to its signal-suggested type, and is accepted. That is,

jA2 ≥ jO2 and jO2 ≥ 1,

or

jO2 < 1.

Combining with (12), the two su�cient conditions when W > F are given by (i) W ≥ 2F , or

(ii) F + 2 < W ≤ 2F − 1 and α ≤ (W−F )2−W+F−2
(W−F )2+W+F−2 .

Now I move on to the case whereW ≤ F . In an equilibrium without unraveling, no actions

are taken in Period 1. In Period 2, after � is revealed, fF makes an o�er to wW , fF−1 to

wW−1, ..., and fF−W+1 to w1. All these o�ers are accepted.

Suppose a �rm fj deviates by making an early o�er to its signal-suggested type r̂(j) =

j − F +W . The o�er is accepted if

j ≥
(
α+

1− α
W

)
× j(r̂(j)) +

1− α
W

×

(
W∑
r′=1

j(r′)− j(r̂(j))

)
−
(
α+

1− α
W

)
, (17)

or equivalently,

j ≥ jA3 ≡
2F −W + 1

2
− 1

W
− α

1− α
. (18)

The �rm wants to make such an o�er if

j +W − F ≤ EV (r̂(j)), (19)
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or equivalently,

j ≤ jO3 ≡
1

2
+ F − W

2
. (20)

It is easy to show that jA3 < jO3 , that is, the su�cient condition for no deviation never holds

for W ≤ F .
Therefore, the equilibrium without unraveling always exists if (i) W ≥ 2F , or (ii) F + 2 <

W ≤ 2F − 1 and α ≤ (W−F )2−W+F−2
(W−F )2+W+F−2 .

Proof of Proposition 3

Proof. For a deviation from the equilibrium without unraveling to occur, there must exist a

type of worker and a �rm in Period 1 such that, the �rm is willing to o�er and the worker is

willing to accept.

When W > F , for a deviation between a non-signal-suggested pair to exist, we need ∃r̂
such that

jO1 (r̂)− jA1 (r̂) > 1 if jA1 (r̂) ≥ 0, (21)

or

jO1 (r̂) > 1 if jA1 (r̂) < 0. (22)

(21) ensures that the range between jO1 (r̂) and jA1 (r̂) is larger than 1, so that there always

exists an integer in between. (22) is a boundary case where jA1 (r̂) < 0. Then we need the

range to be even larger so that at least f1 is willing to o�er.18 It is easy to con�rm that the

two conditions above never hold.

Similarly, for a deviation between a signal-suggested pair to exist, we need

jO2 − j
A
2 > 1 if jA2 ≥ 0, (23)

or

jO2 > 1 if jA2 < 0, (24)

which solves F < W < 2F − 1 and α > (W−F )2+W+F−2
(W−F )2+3W+F−2 .

When W ≤ F , for a deviation between a signal-suggested pair to exist, we need

jO3 − j
A
3 > 1 if jA3 ≥ 0, (25)

or

jO3 > 1 if jA3 < 0, (26)

which solves W ≤ F and α > W−1
2W−1 .

18There is another boundary where jO1 (r̂) > F , which never holds since fF never wants to deviate.
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Therefore, the equilibrium without unraveling never exists if (i) W ≤ F and α > W−1
2W−1 ;

or (ii) F < W < 2F − 1 and α > (W−F )2+W+F−2
(W−F )2+3W+F−2 .

Proof of Proposition 4

Proof. Consider the case where W > F .

In an equilibrium with full unraveling, after �̂ is revealed in Period 1, fF makes an o�er

to type r̂ = W , fF−1 to r̂ = W − 1, ..., and f1 to r̂ = W − F + 1. All o�ers are accepted.

Such an equilibrium can never sustain because after Period 1, there are W − F workers left

in the market. Given all the other �rms move early, each �rm has an incentive to deviate to

Period 2, in which case it becomes the only �rm left in the market and can choose the best

remaining worker.

Consider the case where W ≤ F .
In an equilibrium with full unraveling, after �̂ is revealed in Period 1, fF makes an o�er

to type r̂ = W , fF−1 to r̂ = W − 1, ..., and fF−W+1 to r̂ = 1. All these o�ers are accepted.

No workers are left in the market after the �rst period. Therefore, a �rm has no incentive

to deviate as long as in its deviation, no worker would reject her current o�er and become

available in Period 2. That is, in the subgame after any �rm's deviation, all workers still

accept their o�ers in Period 1.

Suppose a �rm fj′ deviates and waits until Period 2, j′ = F −W + 1, F −W + 2, ..., F . A

worker of type r̂ would still accept her current o�er if j′ ≤ j(r̂), that is, a worker would never

deviate for a �rm that is worse than her o�er in equilibrium, which is from her signal-suggested

�rm j(r̂). The binding condition for the existence of an equilibrium with full unraveling then

requires type r̂ = 1 not to unilaterally reject her o�er in Period 1 in the deviation of fF , that

is,

F −W + 1 ≥ 1− α
2

F +

(
α+

1− α
2

)
(F −W ). (27)

The RHS of (27) is the worker's payo� if she accepts her o�er in equilibrium. The LHS is

the worker's expected payo� if she rejects. In this case, after the �rst period, there are two

workers (r̂ = 1 and r̂ = W ) and F −W + 2 �rms (fF , fF−W+1, fF−W , fF−W−1, ..., and f1)

left in the market. Type r̂ = 1 is matched with fF if she turns out to have a higher quality

than r̂ = W , and is matched with fF−W otherwise since fF−W+1 is no longer available to her

after the rejection. Compared to a higher type, the probability of a worker having a higher

quality in the true state is given by 1−α
W ! ×

W !
2 = 1−α

2 . Equation (27) solves

α ≥ W − 2

W
.

Together with the constraint W ≤ F , an equilibrium with full unraveling exists if W ≤ F and

α ≥ W−2
W .
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On the other hand, when W ≤ F and α < W−2
W , an equilibrium with full unraveling never

exists since type r̂ = 1 has an incentive to reject her o�er in Period 1 in the deviation of fF ,

which makes fF strictly prefer to deviate. Combined with the fact that such an equilibrium

never exists when W > F , we obtain the su�cient and necessary condition for the existence

of an equilibrium with full unraveling: W ≤ F and α ≥ W−2
W .

Sketch of Proof of Proposition 5

Proof. Under this framework, there are two types in Period 1. I denote the worker whose

name is in s1 as type [s1], and all the others as [−s1]. In Period 2, depending on whether

s2 is the same as s1, four possible types may appear. If two signals fall on the same worker

(s1 = s2 = s), that worker is denoted as type [s, s], and all the others as [−s,−s]. If two

signals fall on di�erent workers, both of them are denoted as type [s1, s2], and all the others

as [−s1,−s2].
After observing a signal s1 in Period 1, posteriors on the true state are given by

Pr [θr = i | s1 = i]

=
Pr [s1 = i | θr = i] Pr [θr = i]

2 Pr [s1 = i | θ1 = i] Pr [θ1 = i] + 2 Pr [s1 = i | θ2 = i] Pr [θ2 = i] + 2 Pr [s1 = i | θ3 = i] Pr [θ3 = i]

=
r
6 ×

1
6

2× 1
6 ×

1
6 + 2× 2

6 ×
1
6 + 2× 3

6 ×
1
6

=
r

12
.

Posteriors on types are then Pr
(
rθ[s1] = r | s1

)
= 2 × r

12 = r
6 , and Pr

(
rθ[−s1] = r | s1

)
=

1− r
6

2 = 6−r
12 . In a market where two signals fall on the same worker, after observing s1 and s2,

posteriors on the true state are

Pr [θr = i | s1 = s2 = i]

=
r
6 ×

r
6 ×

1
6

2× 1
6 ×

1
6 ×

1
6 + 2× 2

6 ×
2
6 ×

1
6 + 2× 3

6 ×
3
6 ×

1
6

=
r2

28
.

Posteriors on types are

Pr
(
rθ[s,s] = r | s1 = s2 = s

)
= 2× r2

28
=
r2

14
,
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and

Pr
(
rθ[−s,−s] = r | s1 = s2 = s

)
=

1− r2

14

2
=

14− r2

28
.

In a market where two signals fall on di�erent workers, after observing s1 and s2, posteriors

on the true state are

Pr [θr = i | s1 = i, s2 = j]

=
r
6 ×

(
1− r

6

)
× 1

6

2× 1
6 ×

(
1− 1

6

)
× 1

6 + 2× 2
6 ×

(
1− 2

6

)
× 1

6 + 2× 3
6 ×

(
1− 3

6

)
× 1

6

=
r × (6− r)

44
.

Posteriors on types are

Pr
(
rθ[s1ors2] = r | s1 6= s2

)
= 2× r × (6− r)

44
=
r (6− r)

22
,

and

Pr
(
rθ[−s1,−s2] = r | s1 6= s2

)
= 1− 2× r (6− r)

22
=

22− 2r (6− r)
22

.

Thus, the expected qualities are E[s1] = 6+5v
12 , E[−s1] = 6+13v

24 , E[s,s] = 18+9v
28 , E[−s,−s] =

10+33v
56 , E[s1,s2] = 18+21v

44 , and E[−s1,−s2] = 2+6v
11 .

The main idea of the rest of the proof is to use backward induction, which means, for each

possible deviation, the subgames afterwards are solved and the expected utility is calculated.

For the equilibrium to sustain, we simply need to ensure the expected utility is higher on

the equilibrium path. Because the number of subgames is very big for this game, I provide a

sketch of proof to avoid tediousness on presentation.

In an equilibrium without unraveling, the best �rm f3 has no incentive to deviate.

Step 1: Consider the possible deviations in Period 1. No deviation requires v ≥ 6
11 or

u ≤ 4
11 .

f1: If accepted, f1 always wants to deviate since it is getting the worst worker in equilib-

rium. However, both types [s1] and [−s1] will reject.
f2: If accepted, f2 is willing to make an o�er to [s1] if v < E[s1] = 6+5v

12 , i.e., v < 6
7 .

However, [s1] will not accept.19 If accepted, f2 is willing to make an o�er to [−s1] if v <
E[−s1] = 6+13v

24 , i.e., v < 6
11 . In this case, type [−s1] will not reject such an o�er if u > 4

11 .

Step 2: Consider the possible deviation in Period 2 when two signals fall on the same

worker (s1 = s2 = s). No deviation requires (v ≥ 18
19 or u ≤ 18

23), and (v ≥ 10
23 or u ≤ 10

33).

f1: If accepted, f1 always wants to deviate. But both [s, s] and [−s,−s] will reject.
f2: If accepted, f2 is willing to make an o�er to [s, s] if v < E[s,s] = 18+9v

28 , i.e., v < 18
19 . [s, s]

19When there exists multiple equilibria, the condition holds as long as the worker rejects in one of them.
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accepts if u > 18
23 . If accepted, f2 is willing to make an o�er to [−s,−s] if v < E[−s,−s] = 10+33v

56 ,

i.e., v < 10
23 . Type [−s,−s] will not reject such an o�er if u > 10

33 .

Step 3: Consider the possible deviation in Period 2 when two signals fall on di�erent

workers (s1 6= s2). No deviation requires u ≤ 4
5 , (v ≥

18
23 or u ≤ 18

31), and (v ≥ 2
5 or u ≤ 4

13).

f1: If accepted, f1 always wants to deviate. [s1, s2] will always reject. [−s1,−s2] accepts
if u > 4

5 .

f2: If accepted, f2 is willing to make an o�er to [s1, s2] if v < E[s1,s2] = 18+21v
44 , i.e.,

v < 18
23 . [s1, s2] accepts if u > 18

31 . If accepted, f2 is willing to make an o�er to [−s1,−s2] if
v < E[−s1,−s2] = 2+6v

11 , i.e., v < 2
5 . Type [−s1,−s2] will not reject such an o�er if u > 4

13 .

Step 4:

Combining Step 1 and 2, the condition for no deviations in a market with s1 = s2 is given

by u ∈ [0, 1033 ] or (u ∈ (1033 ,
4
11 ] and v ∈ [1023 , 1]) or (u ∈ ( 4

11 ,
18
31 ] and v ∈ [ 6

11 , 1]) or (u ∈ (1831 ,
18
23 ]

and v ∈ [1023 , 1]) or v ∈ [1819 , 1].

Combining Step 1 and 3, the condition for no deviations in a market with s1 6= s2 is given

by u ∈ [0, 4
13 ] or (u ∈ ( 4

13 ,
4
11 ] and v ∈ [25 , 1]) or (u ∈ ( 4

11 ,
18
31 ] and v ∈ [ 6

11 , 1]) or (u ∈ (1831 ,
4
5 ]

and v ∈ [1823 , 1]).

To sum up, for an equilibrium without unraveling to exist in either of the cases above,

we need either one of the following conditions to hold: (1) u ∈ [0, 1033 ]; (2) u ∈ (1033 ,
4
11 ] and

v ∈ [1023 , 1]; (3) u ∈ ( 4
11 ,

18
31 ] and v ∈ [ 6

11 , 1]; (4) u ∈ (1831 ,
18
23 ] and v ∈ [1823 , 1]; (5) u ∈ (1823 ,

4
5 ] and

v ∈ [1819 , 1].

Sketch of Proof of Proposition 6

Proof. The method used here is similar to the proof of Proposition 5, except that the workers

now can hold an exploding o�er for one period. Then a dominate strategy for a worker who

has received an early o�er is to hold it for one period, instead of responding right away. Hence,

for the same reason as that in Proposition 1, no deviation will take place in Period 2 given

that all o�ers in Period 2 will be held until the last period.

On the other hand, in the subgame following a deviation in Period 1, we need to consider

how worker types evolve in order to calculate expected utilities. A type-[s1] worker in Period

1 will turn into type [s, s] with probability 7
18 , and into type [s1, s2] with probability 11

18 in

Period 2. A type-[−s1] worker in Period 1 will turn into type [s1, s2] with probability 11
36 , into

type [−s,−s] with probability 14
36 , and into type [−s1,−s2] with probability 11

36 .

In an equilibrium without unraveling, the best �rm f3 has no incentive to deviate.

Step 1: No deviation by f1 requires u ≤ 4
5 or v ≥ 8

15 . If accepted, f1 is always willing to

deviate and make an o�er in Period 1. After holding the early o�er from f1 till Period 2, type

[−s1,−s2] will accept if u > 4
5 ; the o�er will be rejected in all other cases. Therefore, f1 never

o�ers to [s1] in Period 1, and never o�ers to [−s1] if u < 4
5 . When u > 4

5 , f1 will not o�er to
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[−s1] if v2 >
14
36 ×

8v
28 + 11

36 ×
2+6v
11 + 11

36 ×
17v
44 , where

17v
44 ,

8v
28 , and

2+6v
11 are the �rm's expected

utilities when [−s1] becomes [s1, s2], [−s,−s], and [−s1,−s2] respectively. It solves v > 8
15 .

Step 2: Consider the deviation of f2 by making an o�er to type [s1]. No deviation requires

u ≤ 18
31 , (u ∈ (1831 ,

18
23 ] and v ≥ 2

3), or (u >
18
23 and v ≥ 28

33).

If u < 18
31 , the o�er will always be rejected in Period 2.

If u ∈ (1831 ,
18
23), the o�er will be accepted when [s1] becomes [s1, s2], and will be rejected

when [s1] becomes[s, s]. Therefore, f2 will not o�er if v > 7
18 ×

24v
28 + 11

18 ×
18+21v

44 , i.e., v > 2
3 .

If u > 18
23 , the o�er will always be accepted in Period 2. Hence, f2 will not o�er if v > 28

33 .

Step 3: Consider the deviation of f2 by making an o�er to type [−s1]. No deviation

requires u ≤ 18
31 , (u ∈ (1831 ,

18
23 ] and v ≥ 2

3), or (u > 18
23 and v ≥ 28

33). requires u ≤ 10
33 ,

(u ∈ (1033 ,
4
13 ] and v ≥ 10

37), (u ∈ ( 4
13 ,

18
31 ] and v ≥ 6

17), or (u >
18
31 and v ≥ 6

11).

If u < 10
33 , the o�er will always be rejected in Period 2.

If u ∈ (1033 ,
4
13), the o�er will be rejected when [−s1] becomes [s1, s2], will be accepted when

[−s1] becomes [−s,−s], and will be rejected when [−s1] becomes [−s1,−s2]. Hence, f2 will

not o�er to [−s1] if v > 11
36 ×

18v
22 + 14

36 ×
10+33v

56 + 11
36 ×

19v
22 , i.e., v >

10
37 .

If u ∈ ( 4
13 ,

18
31), the o�er will be rejected when [−s1] becomes [s1, s2], will be accepted when

[−s1] becomes [−s,−s], and will be accepted when [−s1] becomes [−s1,−s2]. Therefore, f2
will not o�er to [−s1] if v > 11

36 ×
18v
22 + 14

36 ×
10+33v

56 + 11
36 ×

2+6v
11 , i.e., v > 6

17 .

If u > 18
31 , the o�er will always be accepted in Period 2. Hence, f2 will not o�er to s1 if

v > 11
36 ×

18+21v
44 + 14

36 ×
10+33v

56 + 11
36 ×

2+6v
11 , i.e., v > 6

11 .

Step 4: Combining all conditions above, for an equilibrium without unraveling to exist,

we need either one of the following conditions to hold: (1) u ∈ [0, 1033 ]; (2) u ∈ (1033 ,
4
13 ] and

v ∈ [1037 , 1]; (3) u ∈ ( 4
13 ,

18
31 ] and v ∈ [ 6

17 , 1]; (4) u ∈ (1831 ,
18
23 ] and v ∈ [23 , 1]; (5) u ∈ (1823 , 1] and

v ∈ [2833 , 1].
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