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Abstract

The efficacy of the widely-adopted “top-n” policy in university integration has been

questioned because students strategically relocate to low-achieving high schools. We

show that when different SES groups have heterogenous relocation costs, the policy

can even segregate minorities from the target university, compared to the school-blind

policy. A suitably chosen eligibility requirement, featuring the minimum time students

must spend at a high school in order to be eligible for top-n admissions, can restore the

efficacy of this policy. However, the most stringent requirement is not always optimal.

The optimal requirement depends on the original distribution of students across high

schools.
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1 Introduction

Over the past few decades, affirmative action has been widely implemented in employment

and education contexts while often provoking legal and political controversy. Such policies

are designed to increase the representation of disadvantaged groups in public spheres and
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to close the socioeconomic gaps that exist between different population groups. Efforts

to close these gaps are typically justified based on the fact that they exist as a result of

historic discrimination. For example, in K-12 public education, various kinds of quota-based

school choice systems (namely “controlled school choice”) are used in many big cities in

the US. In higher education, many university admissions committees explicitly state their

preferences for a student body with a diversity of gender, ethnicity, and socioeconomic status

(SES). In Australia, universities are increasingly using so-called “alternative pathways,”

giving students access to higher education via avenues other than standardized exam scores.

One of the prevailing affirmative action policies in the university sector is the so-called

“top-n” policy: a university guarantees admission to students who are in the top n fraction

(i.e., 100n percent) of graduates in their high school, usually judged by some measure of their

educational achievement. The aim is to increase the representation of low-SES students at

prestigious universities, since disadvantaged high schools would not typically send many

students to such universities. In the US, Texas, California, and Florida have mandated

their state universities, including flagship institutions, to guarantee admission to the top n

fraction of students in each high school, with the state government specifying the fraction n.

Several Group of Eight universities in Australia, such as the Australian National University

and Monash University, use this policy as part of their alternative admission pathways.

Contrary to expectations, however, the empirical literature has questioned the efficacy

of the top-n policy in creating integrated student bodies at target universities, both in

the short run (Kain et al., 2005; Long and Tienda, 2010) and in the long run (Long and

Bateman, 2020; Cortes and Klasik, 2020). To explain this puzzle, the literature has further

examined student behavior in relation to high school choice, and found that the top-n policy

induces strategic enrollment in a high school, by students and their families, or strategic

relocation to a new high school (Cullen et al., 2013; Cortes and Friedson, 2014; Estevan

et al., 2018). Since the top-n policy gives preferential treatment based on the high school

that students attend, rather than their race or gender, marginal students at high-achieving

high schools are incentivized to move to lower-achieving schools in order to gain admission

to a prestigious university. Intuitively, if such students move high school in order to gain

university admission, they will secure the top-n admission slots from low-achieving schools,

while displacing some students at these schools who could otherwise have been admitted. As

a result, those who initially attend a high-achieving school and then relocate will constitute

a large share of the admitted population at the target universities, neutralizing the top-n

policy’s intended effect.

To examine the equilibrium consequence of this strategic relocation, this paper theoreti-
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cally studies the effectiveness of the top-n policy by formally modeling the game of student

relocation. One of the main features of our model is the heterogeneity of relocation costs

among different SES groups. More specifically, we assume that this cost (relative to the

utility gain from admission by the target university) is generally higher for low-SES fami-

lies than for high-SES families, reflecting the former group’s financial constraints. Our first

result shows that the top-n policy can actually segregate low-SES students from the target

university when the relocation cost for high-SES families is sufficiently low (Proposition 1).

This result is surprising, but also intuitive: since high-SES students are willing to move to

any high school while low-SES students may not be so willing, the lowest cutoff across all

high schools becomes lower than when the top-n policy is not used, thus enabling high-SES

students to occupy a larger share of the university slots.

To mitigate the relocation incentive, policymakers often impose an eligibility requirement

featuring the minimum time spent at a new high school. That is, students need to attend

their new high school for a minimum period of time before graduation in order to be eligible

for top-n admission from that school. For example, under the Texas Top Ten (percent)

policy, many high schools in Texas stipulate a period of one to two years, so that strategic

relocators do not benefit from switching schools just before graduation (Cullen et al., 2013).

Since students typically do not prefer to spend an extended period in a low-achieving high

school, a longer time requirement implies a higher cost to them.

We then show that, with an appropriate level of eligibility requirement, the top-n policy

can achieve a higher degree of integration than the school-blind policy (Proposition 2). This

result holds under our assumption that the most stringent eligibility requirement, capable

of suppressing any relocation incentives, is feasible. This guarantees that the top-n policy’s

efficacy is restored when it is deployed together with an effective eligibility requirement.

However, we further show that the degree of integration achieved in equilibrium is not

necessarily monotone in the level of eligibility requirement: the most stringent eligibility

requirement is not always optimal for university integration. To see the intuition, note that

the fraction n of the top-n policy is typically not high enough to fill the entire capacity

of the target university. The remaining seats are filled through at-large admissions; that

is, admissions based on merit, regardless of a student’s school identity. In this scenario,

the admitted population under the top-n policy is biased toward high-SES groups even

when no student moves high school. Perhaps surprisingly, we find that this bias may be

corrected at an equilibrium under an intermediate level of eligibility requirement. When

the eligibility requirement is not so stringent, students are incentivized to relocate only

to a school with characteristics similar enough to their original school. Due to the local
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relocation, the top-n admissions cutoff of a middle-achieving school can be higher than that

of a higher-achieving school in equilibrium. Then, the middle-achieving school may send

more students to the target university through at-large admissions under an intermediate

requirement than under the most stringent requirement, thereby increasing the share of

low-SES students among those admitted. Whether or not this type of equilibrium exists

depends on the original distribution of students, and we derive conditions for its existence

in terms of equilibrium cutoffs (Propositions 4–5), as well as of model parameters under

uniform distributions (Proposition 6). We further offer a numerical example to illustrate

when the optimal top-n policy switches between the most stringent and an intermediate

levels of eligibility requirement in the parameter space.

1.1 Related literature

The top-n policy has attracted considerable academic attention due to its wide use in real-

life contexts. The strand of literature most relevant to our paper discusses how students can

strategically respond to the top-n policy when making high school enrollment and relocation

decisions.1

Cullen et al. (2013) analyze students’ high school relocation between the 8th and 10th

grades, before and after the introduction of the Texas Top Ten (TTT) policy. They conclude

that the change in admissions policies influenced students’ high school choices, which conse-

quently increased the proportion of white students in the top 10% pool. Cortes and Friedson

(2014) find that the TTT led to property values rising in poorly performing school districts,

with the effect strongest in districts with the lowest-performing high schools. This suggests

that students strategically relocated to those districts in order to attend a high school with

lower-achieving peers.

Estevan et al. (2018) also find direct evidence that students strategically moved schools

following the introduction of the TTT. They investigate students between the 9th and 12th

grades, and estimate a larger effect than Cullen et al. (2013). The main focus of their paper,

however, is the TTT policy’s influence on high school integration. Using both theoretical

and empirical analyses, the paper shows that although the policy was designed to promote

diversity at the college level, the strategic reactions it induced can actually foster greater

integration of high schools. Estevan et al. (2018) offer, to the best of our knowledge, the first

1As a variant of the top-n policy, the division of university quotas across provinces has also induced a

trend of strategic relocation in China, namely “Gaokao migration.” See, for example, a news article that

discusses this phenomenon, at https://www.globaltimes.cn/content/1149569.shtml (accessed 6 December,

2021.)
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theoretical model of strategic relocation under the top-n policy. The main structure of our

model follows that of Estevan et al. (2018), but we focus instead on university integration

and the role of an eligibility requirement. We also allow for heterogeneous moving costs,

which generates potentially adverse effects of the top-n policy, as shown in Proposition 1.

Using a theoretical model in which applicants are selected based on traits that can be en-

dogenously chosen at a cost, Fryer Jr et al. (2003) make the general argument that strategic

responses to color-blind affirmative action policies such as top-n may render these policies in-

efficient over the long run.2 Our model delivers the disquieting message that the top-n policy

can even harm university integration, when students from different SES backgrounds adopt

different moving patterns. We also complement the above literature by adding eligibility

requirements as a potential solution to the problem of strategic relocation.

These strategic responses may help to reconcile two apparently conflicting findings in

the literature: although it has been shown that the top-n policy has widened the pool of

high schools that send students to flagship universities (see, for example, Montejano, 2001;

Long et al., 2010; and Niu and Tienda, 2010), many studies have questioned its purported

achievement of improving diversity at universities.

Investigating the short run, Kain et al. (2005) show that the elimination of race-based

affirmative action had a devastating effect on minority enrollment in Texas selective public

universities, and that the introduction of the TTT was not effective in countering the effect.

Similar conclusions are reached by Long and Tienda (2010). Fletcher and Mayer (2014)

find that although the TTT impacted students’ college application behavior, there is little

evidence that it lead to notable increases in diversity at flagship universities. Combining data

from seven flagship universities in Texas, California, and Florida, Long (2007) estimates that

the introduction of the top-n policy in these states has offset only one-third of the total losses

in minority representation caused by the abolition of race-based affirmative action, and that

this effect is not statistically significant.3

Investigating the long run, Long and Bateman (2020) analyze the enrollments of 19 flag-

ship universities in nine states following the race-based affirmative action bans. They find

that the share of minority students admitted to these universities has been steadily declin-

2On a related note, Ellison and Pathak (2021) investigate the consequences of shifting from a race-based

affirmative action policy to a color-blind, neighborhood-based alternative at Chicago Public Schools. They

conclude that the color-blind option is less effective than racial quotas in increasing minority or low-income

access.
3Although Niu and Tienda (2010) find evidence that the TTT boosted flagship enrollments among His-

panics in the short run, Harris and Tienda (2012) argue that, after accounting for the increasing percentage

of Hispanic students in Texas, Hispanics are more disadvantaged under the top 10% admission regime.
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ing, implying that alternative policies, including top-n, have been unable to compensate for

the racial diversity loss as a result of the bans. Cortes and Klasik (2020) demonstrate that

during the 18 years following enactment of the TTT, it did not result in any meaningful

changes to the patterns of admissions from high schools in terms of their racial and eth-

nic composition, and they are able to provide little to no evidence of its equity-producing

effects. Similarly, Kapor (2020) finds that although the TTT has increased enrollments

of students from high-poverty schools to flagship universities, it is limited in its ability to

increase minority enrollments.

Other effects of the top-n policy have also been discussed in the literature. For example,

Andrews et al. (2010), Niu et al. (2006), and Daugherty et al. (2014) investigate the policy’s

influence on students’ college application behavior. Cortes (2010), Bleemer (2021), and Black

et al. (2020) focus on its effects on students’ graduation and earning outcomes.

Our paper is also related to the extensive literature on race-based affirmative action.

Here we focus our review on affirmative action in school choice. In their seminal paper,

Abdulkadiroğlu and Sönmez (2003) extend their model to allow for simple affirmative action

policies with type-specific quotas. These “hard quotas” (minimum and maximum number

of seats allocated to specific type of students) are further analyzed by Kojima (2012), while

“soft quotas” (minimum and maximum number of seats are reserved for, in the sense of

giving a higher priority to, specific types of students) are introduced and analyzed in Hafalir

et al. (2013) and Ehlers et al. (2014).4 As is common with the school choice problems, the

papers in this strand of the literature do not consider the strategic reactions of students to

change their type endogenously.

The rest of the paper is organized as follows. Section 2 introduces the model of relocation

under the top-n policy. In Section 3, we provide our main results on the optimal top-n policy.

Section 4 provides two further discussions on our results. We conclude the paper in Section

5. All proofs are in the Appendix.

2 Model

There is a unit mass of students, each of whom is characterized by an educational achievement

a ∈ [0, ā] where ā > 0, a socioeconomic status (SES) group g, and a high school si in which

they are originally enrolled. We consider two SES types, ḡ and g, and three high schools,

4Recent studies on controlled school choice and other two-sided matching problems with diversity concerns

include Westkamp (2013), Kominers and Sönmez (2016), Fragiadakis and Troyan (2017), Dur et al. (2018),

Tomoeda (2018), Aygün and Turhan (2020), and Dur et al. (2020).
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s1, s2, and s3.5 Each high school si has a measure qi of students, where
∑3

i=1 qi = 1. High

schools differ in the distribution of their original students’ achievements and SES. They can

be ranked in the following way. Fi (·) denotes the distribution of achievements at each school

si, and we assume that Fi+1 (·) strictly first-order stochastically dominates Fi (·) for each

i = 1, 2. pgi denotes the share of SES group g in high school si, and we assume pḡ3 ≥ pḡ2 ≥ pḡ1

and pḡ3 6= pḡ1. These assumptions imply that achievement and SES are correlated in such a

way that a high school with a larger index tends to have higher educational achievement and

a higher proportion of ḡ. For the sake of tractability, however, we assume that achievement a

and SES g are distributed independently within each high school. Let pg := q1p
g
1 +q2p

g
2 +q3p

g
3

denote the share of SES group g in the aggregate population.

We consider two universities, U and u. U has a fixed capacity qU < 1 and is preferred by

all students. u accommodates all other students; i.e., the capacity of u is 1− qU or greater.

Although we call u a university, u represents any option other than attending the target

university U , including attending a less prestigious university or entering the labor market.

Since there is only one competitive university, we focus on U ’s admissions policy. We

consider the school-blind (SB) policy and the top-n policy. The SB policy admits the top qU

students across all high schools based on their achievement a regardless of their high school

identity. By contrast, the top-n policy guarantees admission to any student who is within

the top n fraction of their high school peers.

As shown in the literature (Cullen et al., 2013; Estevan et al., 2018), the top-n policy in-

duces strategic relocation across high schools, typically from high-achieving to low-achieving

schools. Policymakers are aware of this problem, and in order to mitigate relocation incen-

tives, they often require students to attend a high school long enough to be eligible for top-n

admissions from that school. This imposes a higher cost on strategic relocation because stu-

dents who relocate strategically prefer not to spend an extended period at their new school,

which typically has a lower educational achievement than their original school.

To model this type of eligibility requirement, we construct a timeline from 0 to T , where

T can be interpreted as the total years of high school. e ∈ [0, T ] denotes the eligibility

requirement, which is the minimum time a student is required to spend at a high school in

order to be eligible for top-n admissions from that school. When e = 0, it means that the

top-n policy has no eligibility requirement. We assume that students move at most once in

[0, T ] and only do so for a strategic reason.6 Thus, a student is eligible at the new school

5As we discuss below, the implications of our main results continue to hold in a more general model. See

Section 4.1 for details.
6In other words, we implicitly assume that a student’s original high school is optimally chosen and thus
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only if they relocate before T − e, and is otherwise eligible only at their original school. The

top-n policy with an eligibility requirement e admits students in the following way:

1. (top-n admissions) U admits the top n achievers from each high school. Students are

eligible for the top-n admissions at a high school s if they are enrolled in s before T −e.

2. (at-large admissions) Among the remaining students, U admits top qU − n achievers

according to their achievement a regardless of their high school identity.

Interestingly, in practice, the level of eligibility requirement e varies across contexts and

markets. In the context of the Texas Top Ten policy, Cullen et al. (2013) document that

high schools typically impose a requirement of one to two years’ attendance in order to

“mitigate[s] the scope for gain from late-term transfers during junior or senior year.” In

Chinese college admissions, the quota of each university is divided among provinces instead

of high schools, which has led to a common phenomenon, namely “Gaokao migration,” where

students strategically migrate across provinces to take the college entrance exam.7 To curb

such incentives, various eligibility requirements are imposed on migrant students wishing to

take the college entrance exam in a new province. For example, Sichuan province requires 3

years’ residence, and Guizhou requires 12 years, while Henan has no such requirement. Our

main research question is to find the optimal level of e by defining the objective function of

the policymaker and the relocation game played by students, as we elaborate below.

To model the game of relocation under the top-n policy, we consider the following utility

function of students. The utility of a student in SES group g ∈ {ḡ, g} who relocated from

si to sj at time t ∈ [0, T ] and is admitted to U (resp. u) is v(U) − cg (|i− j|, t) (resp.

v(u) − cg (|i− j|, t)). The function v(·) indicates the value of attending a university, and

cg (|i− j|, t) represents the cost of relocation, where cg (0, t) = 0 for any t ∈ [0, T ] without

loss of generality. We assume that (cḡ (·, ·) , cg (·, ·)) satisfies the following five conditions:

(i) cg(|i− j|, t) is strictly decreasing in t for any g ∈ {ḡ, g} and |i− j| > 0;

(ii) cg(|i− j|, t) is strictly increasing in |i− j| for any g ∈ {ḡ, g} and t ∈ [0, T ];

(iii) cḡ (|i− j|, t) < cg (|i− j|, t) for any |i− j| > 0 and t ∈ [0, T ];

(iv) cḡ (|i− j|, T ) < v(U)− v(u) for any |i− j| > 0; and

(v) cḡ (|i− j|, 0) > v(U)− v(u) for any |i− j| > 0.

it is costly to spend an extended period at a different high school.
7China’s policy is not a percent plan but it can be considered a variant of the top-n policy.
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(i) assumes that moving earlier is more costly than moving later. This is a natural assumption

given that we focus only on strategic relocation. Since any new high school is less preferable

than a student’s original school and earlier relocation requires a longer stay at a new high

school, it is thus more costly. (ii) means that it is more costly to move to a school that differs

more from the original school, where the difference is measured by the school indices. Note

that, in our setting, the school index is ordered by the achievement ranking as well as the

SES composition. (iii) means that low-SES students tend to have higher costs of relocation.

This can also be interpreted as the budget or borrowing constraints, rather than the actual

difference in the moving cost. (iv) assumes that the moving cost of a high-SES student is

low enough such that they are willing to relocate to any other school just before graduation

if this means they can be admitted to U instead of u as a result. This is not necessarily

the case for low-SES students; that is, cg (2, T ) can be higher than v(U) − v(u). Finally,

(v) means that no student has an incentive to move at time 0. We adopt this assumption

simply in order to render feasible the highest-level eligibility requirement, which enables us

to study what happens when relocation incentives are completely suppressed.

We model the strategic relocation induced by the top-n policy as a simultaneous game in

which students choose moving strategies σ(a, g, si) ∈ {s1, s2, s3} × [0, T ]. σ(a, g, si) specifies

a pure action of when to move, and which school to move to, for each student with char-

acteristics (a, g, si). An equilibrium is σ such that for all (g, si) ∈ {ḡ, g} × {s1, s2, s3} and

almost all a in the support of Fi(·), σ(a, g, si) is a best response to σ. An equilibrium out-

come is characterized by a cutoff score at each high school, representing the lowest possible

achievement that a student needs in order to be admitted to U from that school. We use π

to denote the policy being considered, which can be the SB policy or the top-n policy with

requirement e ∈ [0, T ]; that is, π ∈ {SB} ∪ [0, T ]. ai(π, σ) denotes the cutoff score of high

school si when σ is played under policy π. We show in Appendix A that the existence of an

equilibrium is guaranteed for the top-n policy with any eligibility requirement e ∈ [0, T ].

The objective of the policymaker is to achieve an SES composition of the students in U

(and u) that is representative; i.e., as close as possible to the composition in the aggregate

population. To evaluate this goal, we use a segregation measure of universities. Recall that

pgi is the share of SES group g in high school si and pg is SES group g’s share in the aggregate

population. Let p = (pḡ, pg) be the composition vector in the population and use pU(π, σ)

(resp. pu(π, σ)) to denote the SES composition vector of university U (resp. u) when σ is

played under policy π ∈ {SB} ∪ [0, T ]. The degree of university segregation under (π, σ) is

defined by

I (π, σ) := A1 (p)− A2 (p) [qUH (pU(π, σ)) + (1− qU)H (pu(π, σ))] ,

9



where A2 (p) > 0 and H (·) is strictly concave. As a special case, if H (·) and A1 (·) are

entropy functions and A2 (p) = 1, then I is the mutual information index (MII):

I (π, σ) = −
∑
g

pg log (pg)−

[
−qU

∑
g

pgU(π, σ) log (pgU(π, σ))− (1− qU)
∑
g

pgu(π, σ) log (pgu(π, σ))

]
.

While we use MII for numerical examples, our theoretical analyses apply to any A1(·),
any A2(·) > 0, and any strictly concave function H(·).8 We omit σ from (π, σ) when the

equilibrium is unique under policy π.

Based on the segregation index I, we define the relationship between policies in terms of

university integration.

Definition 1. A policy π ∈ {SB} ∪ [0, T ] achieves a weakly higher (resp. lower) degree of

integration than another policy π′ ∈ {SB} ∪ [0, T ] if I (π, σ) ≤ I (π′, σ′) (resp. I (π, σ) ≥
I (π′, σ′)) for any equilibrium σ under π and any equilibrium σ′ under π′.

For the purpose of this paper, we focus only on integration as a policy goal and charac-

terize a policy that achieves the highest level of integration.

Definition 2. A top-n policy π ∈ [0, T ] is an optimal top-n policy if π achieves a weakly

higher degree of integration than any other top-n policy π′ ∈ [0, T ].

3 Results

3.1 Relocation incentives and market-clearing conditions

In this section, we use a simple example to illustrate the equilibrium analysis; that is, we

discuss which students have the incentives to move to which high schools, and how market-

clearing conditions determine equilibrium cutoff scores. This example demonstrates that

while the top-n policy can achieve integration without student relocation, it can actually

exacerbate the segregation problem when students can strategically move across high schools

and have heterogeneous moving costs.

Example 1. Suppose that originally each high school si has the same measure of students

qi = 1
3
. At each high school, student achievement is uniformly distributed with density

8This formulation is consistent with many other segregation indices including Theil’s information index

(Theil and Finizza, 1971), the variance ratio index (James and Taeuber, 1985), and the Bell-Robinson index

(Kremer and Maskin, 1996).
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1
3

where the domain is [0, 1] for s1, [0.1, 1.1] for s2, and [0.2, 1.2] for s3. The capacity of

university U is qU = 0.3. Assume that pḡ3 = 0.8, pḡ2 = 0.5, and pḡ1 = 0.2, so that the

proportion of type ḡ in the aggregate population is 0.5.

Under the SB policy, there is a unique cutoff score aSB such that any student whose

achievement is above aSB is admitted to U . By qU = 0.3, it is easy to find the SB-cutoff:

aSB = 0.8. Since a school with a larger index sends more students to U and it is correlated

with the proportion of the high-SES type ḡ, the admitted population is biased toward type

ḡ. The SES composition of U in this case is computed as (0.57, 0.43), meaning that 57% of

the admitted students are type ḡ.

Next, consider the top-n policy with n = 0.3. Suppose the eligibility requirement and

moving costs are such that it is too costly for any students to relocate to any other high school.

In this case U admits the top 30% of students from each high school; i.e., the admission cutoffs

are (a1, a2, a3) = (0.7, 0.8, 0.9). As a result, the SES composition of the admitted population

is (0.5, 0.5) and U is perfectly integrated. Note that the perfect integration is achieved under

this scenario because the capacity of U is entirely filled through top-n admissions. It is not

always achieved when qU > n, as we will see in Example 2.

𝑠"
𝑠#
𝑠$

0.8

0.8
0.9

0.7 0.86

0.94

0.78
(i) (ii) (iii)

Figure 1: An illustration of (i) the SB policy, (ii) the top-n policy with no student relocation,

and (iii) the top-n policy with the relocation of type-ḡ students. The red lines are the cutoff

scores of schools under each policy. The green arrows represent relocation flows of students

in equilibrium.

Under the top-n policy with the same n = 0.3, let us now consider a different moving

pattern, such that (i) low-SES students still choose not to move, and (ii) a high-SES student

who is not admitted to U from her original school is willing to move to any lower-achieving

school provided this can lead to her being admitted to U . That is, there are flows of type-ḡ

students from s3 to s2, from s3 to s1, and from s2 to s1.9

9Lemma 1 formally shows that, under this moving pattern, the equilibrium cutoff is always monotone,
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In this case, we can see that the admission cutoffs (0.7, 0.8, 0.9) of the no-relocation

case can no longer be sustained. Given these cutoffs, type-ḡ students at s3 move to s2 or

s1 if their achievements are in [0.8, 0.9) or [0.7, 0.8), respectively. Once they move out, the

population of s3 goes down, and by the 30% rule, the admission cutoff of s3 must go up

from 0.9. With the flows of students from both s3 and s2, s1’s population increases. But

since only those who are certain of being admitted to U move to s1 in equilibrium, they

crowd out the original students at s1 and s1’s cutoff also increases. School s2 is affected by

both forces described above: some students move out to s1 and others move in from s3. The

market-clearing conditions for the equilibrium cutoffs are:

1.2− a3 = 0.3[1− 0.8(a3 − a1)]

1.1− a2 + 0.8(a3 − a2) = 0.3[1 + 0.8(a3 − a2)− 0.5(a2 − a1)]

1− a1 + 0.8(a2 − a1) + 0.5(a2 − a1) = 0.3[1 + 0.8(a2 − a1) + 0.5(a2 − a1)]

Each market-clearing condition represents the top-n rule at each school, which requires that

the fraction of those admitted from si, including migrants, should be exactly n = 0.3 of the

student population at that school following relocation. The population of migrants between

schools is characterized by the cutoffs and the SES distributions. For example, 0.8(a3−a1) is

the population of students moving out of school s3. They move to s2 if their achievement is in

[a2, a3) and to s1 if it is in [a1, a2). By solving these, the equilibrium cutoff scores when only

high-SES students are willing to relocate are approximately (a1, a2, a3) ' (0.78, 0.86, 0.94).

In this equilibrium, by strategically moving across schools, any high-SES student with

an achievement higher than 0.78 can be admitted to U , irrespective of their original high

school. By contrast, low-SES students are admitted only when their achievement is above

the cutoff of their original school. The resulting SES composition of the admitted population

is (0.61, 0.39), which is even more biased toward the ḡ type than it is under the SB policy.

We can calculate the MII as the segregation index I and find that it equals 0.0044 under

the top-n policy when only high-SES students move. It is higher than the MII under the SB

policy, which equals 0.0017.

3.2 Top-n policy with no eligibility requirement

We formalize our observation in Example 1 and show that the top-n policy cannot integrate

universities unless it controls the relocation of students.

i.e., a3 ≥ a2 ≥ a1 holds in equilibrium.
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Proposition 1. The top-n policy with no eligibility requirement achieves a weakly lower

degree of integration than the school-blind policy.

This result sounds a warning against the use of the top-n policy, which is generally

expected to achieve a higher degree of integration than the SB policy. While its message

may be surprising, the intuition of this result is straightforward. Recall that condition (iv)

of the cost function assumes that the moving cost of a high-SES student is low enough such

that they are willing to relocate to any other school just before graduation at T if this means

they can be admitted to U instead of u as a result. This is not necessarily the case for the

low-SES type; that is, even under the top-n policy with no eligibility requirement, it may

still be too costly for a low-SES student to relocate to a school with the lowest cutoff score.

In the third case of Example 1 where only high-SES students may relocate, we saw that the

lowest cutoff of schools was 0.78, and it was lower than the common cutoff 0.8 under the SB

policy. This relationship is a general consequence of market-clearing conditions: we show

that, in general, the lowest cutoff score of all high schools under the top-n policy with e = 0

is always lower than the common cutoff score under the SB policy. Then, the high-SES type

now enjoys the benefit of the lower cutoff score and is able to occupy an even larger share

of the seats in U than under the SB policy.

This result is an extension of the “neutrality theorem” shown by Estevan et al. (2018).

The neutrality theorem states that when the moving cost is low enough for all students, the

set of admitted students under the top-n policy (with no eligibility requirement) becomes

identical to the one under the SB policy in equilibrium. By contrast, our setting allows for

a realistic structure of cost heterogeneity across SES types, and reveals the possibility that

the top-n policy can even harm integration.

3.3 Optimal eligibility requirement

As a solution to the potential problem of the top-n policy presented above, we consider an

eligibility requirement e and analyze its optimal level. As we will show below, in the general

case with qU > n; that is, when the capacity of U is filled through both top-n and at-large

admissions, the most stringent requirement may not always be optimal and the analysis

requires a careful examination of different levels of e.

To do so, we classify all possible policies into a finite number of classes, although the

eligibility requirement is defined as a continuous variable e ∈ [0, T ]. Recall that the cost

of relocation cg(|i − j|, t) is strictly decreasing in the time t of relocation and is strictly

increasing in the school difference |i − j|. A stricter eligibility requirement e increases the
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cost by requiring an earlier move at T−e, and thus constrains the maximum school difference

a student is willing to accept when relocating.10 Specifically, the maximum school difference

equals 2 for SES type g if the requirement e satisfies cg(2, T − e) ≤ v(U)− v(u), equals 1 if

v(U) − v(u) ∈ [cg(1, T − e), cg(2, T − e)), and equals 0 if v(U) − v(u) < cg(1, T − e). The

moving pattern in equilibrium is characterized by the maximum school difference that each

SES type is willing to accept. Given the three high schools and the two SES types, there is

a total of six possible moving patterns, as specified in Table 1. We group all requirements

that lead to the same moving pattern as the same class of policies because they achieve the

same integration level. We name these classes of policies as π1, . . . , π6, as shown in Table 1.

We say that policy πk (k ∈ {1, . . . , 6}) is feasible if there exists some eligibility requirement

e that induces the moving pattern corresponding to πk.

policy π1 π2 π3 π4 π5 π6

students with ḡ 2 2 2 1 1 0

students with g 2 1 0 1 0 0

Table 1: Classification of top-n policies

As we increase e, relocation becomes more costly and the maximum school difference

weakly decreases for each SES group. Because we assume cḡ (|i− j|, T ) < v(U) − v(u) for

any |i − j| ≥ 0 in condition (iv) of the cost function, the top-n policy with no eligibility

requirement (e = 0) corresponds to one of policies π1, π2, or π3, depending on the cost

function of type-g students. Condition (v) assumes cḡ (|i− j|, 0) > v(U) − v(u) for any

|i−j| > 0, thus ensuring that policy π6 is always feasible when the requirement e is sufficiently

close to T . Note that, for any given parameters of the model, at most one of the two policies

π3 and π4 can be feasible. Therefore, in a given problem, the set of feasible policies can only

be one of the following: {π1, π2, π3, π5, π6}, {π1, π2, π4, π5, π6}, {π1, π2, π5, π6}, {π2, π3, π5, π6},
{π2, π4, π5, π6}, {π2, π5, π6}, or {π3, π5, π6}.

In our framework, we obtain the following clear implication of an eligibility requirement.

Proposition 2. The optimal top-n policy achieves a weakly higher degree of integration than

the school-blind policy.

We obtain this result without fully characterizing the optimal policy because, in this set-

ting, policy π6 is always feasible and it always achieves a weakly higher degree of integration

10Given an eligibility requirement e, students have the option to move earlier than T − e, but they would

always choose to move as late as possible to minimize the cost of moving.
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than the school-blind policy. Intuitively, policy π6 admits less (resp. more) students from

the highest-achieving school s3 (resp. the lowest-achieving school s1) than the SB policy,

and increases the proportion of the low-SES type students in the admitted population.

To further characterize the optimal policy among all that are feasible, it is essential to

first solve for the ranking of cutoff scores under each possible policy π1, . . . , π6. The following

two lemmas summarize the results.

Lemma 1. In any equilibrium σ under policy π ∈ {π1, π3, π6}, a3(π, σ) ≥ a2(π, σ) ≥ a1(π, σ)

holds.

Lemma 2. In any equilibrium σ under policy π ∈ {π2, π4, π5}, a3(π, σ) ≥ a2(π, σ) ≥ a1(π, σ)

or a2(π, σ) ≥ a3(π, σ) ≥ a1(π, σ) holds.

By exploiting the first-order stochastic dominance relationship between the achieve-

ment distributions Fi’s, we can show that, in any equilibrium σ under any top-n policy

π, a2(π, σ) ≥ a1(π, σ) and a3(π, σ) ≥ a1(π, σ) must hold. However, the relationship between

a3(π, σ) and a2(π, σ) may vary depending on the policy implemented.

Lemma 2 states the non-trivial finding that, under policies π2, π4 and π5, the cutoff

ranking may be non-monotone; that is, inconsistent with the ranking of achievement dis-

tributions. The intuition behind this result is as follows. Under policies π2, π4, and π5,

students of one or both SES types are willing to move only when the school difference is one,

implying that those in s2 may relocate to s1 while those in s3 do not relocate to s1. When

the population of s2 falls following relocation, a2 is pushed up since top-n admissions are

proportional to the high school populations. Then, it is possible that school s2 loses more

students than s3, and that a2 becomes higher than a3 in the equilibrium of policies π2, π4,

and π5.

Given the characterization of cutoff scores, we derive the following result that pins down

the candidates for the optimal policy.

Proposition 3. The optimal top-n policy is policy π6 when policy π4 is not feasible.

Note that the equilibrium of policy π1 achieves the same outcome as the SB policy by

the neutrality theorem of Estevan et al. (2018), and that Proposition 1 shows that policy π1

achieves a weakly higher degree of integration than policies π2 and π3. Then, for Proposition

3, it suffices to show that policy π6 achieves a weakly higher degree of integration than policy

π5. The key to the comparison between policies π5 and π6 is that low-SES students do not

move under either policy. Since high-SES students may move across high schools under

policy π5, this induces a higher equilibrium cutoff score for every school than under policy
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π6, thereby reducing admissions of low-SES students who can only be admitted to U from

their original schools.

Proposition 3 leaves open the possibility that policy π6 may not be optimal when policy

π4 is feasible. It is easy to see that when the capacity of U is entirely filled through top-n

admissions, i.e., n = qU , policy π6 admits the representative population of students (pḡU = pḡ)

and is always optimal. However, when qU > n, the admitted population under policy π6

is not always representative, and is biased toward the high-SES type (pḡU > pḡ) since the

qU−n students admitted at large are mostly from high-achieving schools. If, under policy π4,

students from low-achieving schools occupy a higher share of the qU−n population admitted

at large than under π6, then policy π4 can lead to a higher degree of integration than policy

π6. The following example demonstrates that this scenario may occur in equilibrium.

Example 2. Suppose each high school si has the same measure of students qi = 1
3
. At each

high school, student achievement a is uniformly distributed with density 1
3

and the domain

is [0, 1] for s1, [0.2, 1.2] for s2, and [0.22125, 1.22125] for s3. The capacity of U is qU = 0.203.

Consider the top-n policy with n = 0.2. Assume that pḡ3 = 1 and pḡ2 = pḡ1 = 0.

Under each policy, let aNi be the lowest achievement of students from high school si

admitted through top-n admissions. Let aL be the lowest achievement of students (from

any high school) admitted through at-large admissions. Then, each school’s cutoff score ai

is found by ai = min{aNi , aL}.
Under policy π6, there is no relocation across high schools and the cutoff scores are given

by (aN1 (π6), aN2 (π6), aN3 (π6), aL(π6)) = (0.8, 1, 1.02125, 1.01225). The SES composition vector

of students admitted to U is pU(π6) = 1
0.203

1
3
(0.209, 0.4) ' (0.343, 0.657). Since the SES

composition in the aggregate population is p = (1
3
, 2

3
), pU is biased toward the ḡ type and

hence, I(π6) ' 2.5 · 10−5 > 0.

Under policy π4, it is easy to check that a3 = a2 = aL holds in the unique equilibrium.

The market-clearing conditions are:

1.22125− aN3 = 0.2

1.2− aN2 = 0.2[1− (aL − aN1 )]

aN1 = 0.8[1 + (aL − aN1 )]
1

3
(aN3 − aL + aN2 − aL) = 0.003

By solving these, we obtain the cutoff scores

(aN1 (π4), aN2 (π4), aN3 (π4), aL(π4)) = (0.897, 1.02425, 1.02125, 1.01825).
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The SES composition vector of students admitted to U is pU(π4) = 1
0.203

1
3
(0.203, 0.406) =

(1
3
, 2

3
). By pU = p, policy π4 integrates U perfectly and hence, I(π4) = 0.

In this example, the unique equilibrium of policy π4 integrates U perfectly, while policy

π6 does not. The logic behind this observation is that when students are willing to relocate

only when the school difference is one under policy π4, the population of those students

admitted to U from s3 can be smaller than that under policy π6. To see this, notice that

under policy π4, students at s2 can exploit the low cutoff score of s1 by moving to s1.

This relocation reduces the total population of s2 and hence raises its cutoff score for top-n

admissions to aN2 (π4) = 1.02425, compared with the cutoff under π6, which is aN2 (π6) = 1. As

a result, students from s2 occupy a larger share of at-large admissions under policy π4 than

under policy π6, and the population of students admitted from s3 under policy π4 (which is
1
3
· 0.203) becomes smaller than that under policy π6 (which is 1

3
· 0.209). Combined with

(pḡ1, p
ḡ
2, p

ḡ
3) = (1, 0, 0), fewer ḡ-type students are admitted to U under policy π4 than under

policy π6, correcting the bias of policy π6 and achieving perfect integration in this case.11

To further understand how policy π4 compares with policy π6 in different scenarios, the

next propositions provide the conditions under which either policy π4 or π6 is optimal in

terms of integration. Let ai,j(π, σ) := min{ai(π, σ), aj(π, σ)} be the minimum of the cutoff

scores of two schools si and sj in equilibrium σ under policy π.12 The optimal policy is

mainly determined by how a2,3 under policy π4 compares with a3 under policy π6.

Proposition 4. Consider a problem where policy π4 is feasible. Policy π6 is optimal when

a2,3(π4, σ) ≤ a3(π6) holds in any equilibrium σ under policy π4.

Proposition 5. Consider a problem where n < qU and policy π4 is feasible. When a2,3(π4, σ) >

a3(π6) holds in some equilibrium σ under policy π4, there exists an interval (x, y) ⊂ [pḡ1, p
ḡ
3]

of pḡ2 such that I(π4, σ) < I(π6). That is, for any pḡ2 ∈ (x, y), policy π6 is not optimal.

The relationship between a2,3(π4, σ) and a3(π6) is critical because it determines which

policy sends more students originally from school s3 to the target university U . Since students

are willing to move only when the school difference is one under policy π4 (irrespective of

their SES type), the admitted population of students who are originally enrolled in s3 is

computed as pḡ3q3[1− F3(a2,3(π4, σ))]. On the other hand, since there is no relocation under

policy π6, the admitted population of students from school s3 is given by pḡ3q3[1−F3(a3(π6))].

11(pḡ1, p
ḡ
2, p

ḡ
3) = (1, 0, 0) is only used to achieve perfect integration under policy π4 in this example. As seen

in Proposition 5, this assumption is not necessary for showing the suboptimality of policy π6.
12Under policy π4, there may exist multiple equilibria. The most relevant case is when a2 is strictly higher

than a3 and students in s2 with a ∈ [a3, a2) are indifferent between moving to s1 and moving to s3.
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In addition, applying the same logic used to analyze policy π5 in Proposition 3, we know

that a1(π4, σ) is always higher than a1(π6). This implies that policy π4 always sends fewer

students from school s1 than policy π6. Combined with the population of those originally

from s3, under the condition a2,3(π4, σ) ≤ a3(π6) of Proposition 4, policy π4 sends more stu-

dents originally from higher-achieving schools (only s1, or both s1 and s2), thereby achieving

a lower degree of integration than π6. Under the condition a2,3(π4, σ) > a3(π6) of Proposition

5, the degree of integration depends on the SES distribution pg2 of school s2, because policy

π4 sends fewer students originally from s1 and s3 but more students originally from s2 than

does π6. When pḡ2 is low enough, policy π4 sends strictly fewer type-ḡ students to U than

does π6, and hence the equilibrium of policy π4 can achieve a higher degree of integration

than π6 for some value of pḡ2 ∈ [pḡ1, p
ḡ
3].

3.4 Uniform distribution

The conditions for the optimal top-n policy in Propositions 4 and 5 are characterized in

terms of the cutoff scores in equilibrium. This section focuses on a model with a uniform

distribution of achievement, and illustrates, in terms of model parameters, when and how

policy π4 can achieve a higher level of integration than policy π6.

Consider a model with qU > n. Suppose that originally each high school si has the same

measure of students qi = 1
3
. At each high school, a student’s achievement a is uniformly

distributed with density 1
3

and the domain is [0, 1] for s1, [d1, 1 + d1] for s2, and [d1 + d2, 1 +

d1 + d2] for s3, where d1 > 0 and d2 > 0.

Proposition 6. In the model specified in Section 3.4, there exists an equilibrium σ under

policy π4 such that a2,3(π4, σ) > a3(π6) if qU − n ∈ (max{0,− n
6(1−n)

d1 + 1
3
d2}, 2

3
d1 + 1

3
d2).

This result tells us that, for any d1 > 0 and d2 > 0, there is a range of qU − n such that

policy π6 is not optimal. The intuition for the range of qU−n is as follows. The upper-bound

condition qU − n < 2
3
d1 + 1

3
d2 is used to rule out the cases where a large fraction of students

can be admitted at large and all high schools have identical cutoff scores under either policy

π6 or π4. The lower-bound condition qU−n > max{0,− n
6(1−n)

d1 + 1
3
d2} is satisfied when d1 is

relatively larger compared with d2. In this case, because of the large difference between the

achievement distributions of s2 and s1, many students at s2 can relocate to s1 under policy

π4, which pushes up the cutoff score of s2. In an equilibrium σ where all students at s2 with

achievement a ∈ [a1(π4, σ), a2(π4, σ)) relocate to s1, we can prove that a2,3(π4, σ) > a3(π6)

holds under this lower-bound condition.
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We illustrate the implications of Propositions 5 and 6 with a numerical example, in which

MII is used to indicate the degree of segregation I.13 In Figure 2, we fix (d1, d2, n, qU , p
ḡ
1, p

ḡ
3)

and change the value of pḡ2 in the horizontal axis. The parameter set is chosen to satisfy the

condition in Proposition 6 and thus the premise of Proposition 5. As implied by Proposition

5, we indeed find a range of pḡ2 such that policy π4 achieves a higher degree of integration (a

smaller I) than policy π6.
Example 2: for Proposition 4; Policy 4 can be optimal 

!! = 0.3, !" = 0.04, ( = 0.6, *# = 0.61, ,! = 0.1, ,$ = 0.9 

 

(a) 
 

Example 4: changing with n; Policy 4 can be optimal 

!! = 0.05, !" = 0.05, *# = 0.9, ,! = 0.25, ," = 0.5, ,$ = 0.75 

 

(b) 
 

Figure 2: Degree of segregation (MII) and pḡ2 under policies π4 and π6 (d1 = 0.3, d2 = 0.04,

n = 0.6, qU = 0.61, pḡ1 = 0.1, pḡ3 = 0.9).

4 Discussions

4.1 Implication for a general setting

While we analyzed a model with three high schools and two SES types, its main implications

hold more generally in the following senses.

Implication of Proposition 1. The message of Proposition 1 is that the top-n policy

with no eligibility requirement always fares (weakly) worse than the SB policy in achieving

university integration. It is indeed straightforward to extend this result to a setting where

there are four or more high schools. The key assumption is that the relocation cost of type

ḡ at time T is low enough such that high-SES students are willing to move to any high

school in order to improve their admission outcome when there is no eligibility requirement.

13In this example, under policy π4, we consider an equilibrium σ where all students at s2 with achievement

a ∈ [a1(π4, σ), a2(π4, σ)) relocate to s1, even when a3(π4, σ) < a2(π4, σ) such that they are indifferent between

moving to s1 and moving to s3.
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Note that this is a natural extension of condition (iv) of our cost function. Therefore, the

importance of an eligibility requirement is not specific to our three-school environment.14

Implication of Example 2. The other main message of our theoretical results is that

the most stringent eligibility requirement is not necessarily optimal. It is easy to see that

Example 2 can be “embedded” in a setting with any number of high schools and SES types.

That is, for any number of high schools and SES types, we can find a set of parameters such

that the most stringent eligibility requirement is not optimal. Although we do not provide

the characterization of the optimal top-n policy in a general setting, the message that a

careful choice of an eligibility requirement is important is generally applicable.

4.2 Integration of high schools

Our results imply that it is sometimes preferable to permit student relocation (by choosing

an intermediate level of e) in order to achieve higher university integration. From another

perspective, Estevan et al. (2018) argue that relocation incentives can be used as an instru-

ment to integrate high schools rather than universities. This is based on the idea that if

students from high-achieving schools relocate to lower-achieving schools, this renders the

SES distributions of high schools more uniform.15 Although students tend to relocate as late

as possible, high schools can be integrated for a certain period of time before graduation if

students are incentivized to relocate early to meet some eligibility requirement.

The unbiased mixing theorem of Estevan et al. (2018) shows that any relocation of

students leads to a (weakly) higher degree of integration of high schools. This theorem applies

to policies π4 and π6 in our model because it requires that any relocation is “unbiased”; i.e.,

that the population that moves out of a high school has the same SES distribution as the

original population at that high school. Since some students relocate under policy π4 while

no students relocate under policy π6, the unbiased mixing theorem implies that policy π4

always achieves a (weakly) higher degree of high-school integration than policy π6. This

means that, in addition to the cases described in Proposition 5, there is an added rationale

for policy π4 if the policymaker also cares about the integration of the high school sector.

14While we can allow any number of high schools for this result, it is not straightforward to relax the

assumption of two SES types. We thus leave the question of whether this result continues to hold with three

or more SES types for future research.
15Estevan et al. (2018) consider only the top-n policy with no eligibility requirement. If it is more costly

to move earlier than to move later, students would only want to relocate close to graduation. This indicates

another benefit of imposing an eligibility requirement: without such a requirement, the effect of the top-n

policy on high-school integration can also be rather limited.
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5 Conclusion

In this paper, we offer a simple model crafted to analyze the effects of widely used top-n

policies on the diversity of university campuses. Our model has realistic features such as

the strategic relocation decisions of students, the requirement for a minimum amount of

time to be spent in a high school for students to be eligible for top-n admissions, and the

differentiation of students’ relocation costs based on their SES.

The main takeaway from our paper is that, in order to achieve integration outcomes,

top-n policies need to be accompanied by carefully chosen eligibility requirements. Without

any eligibility requirement, the top-n policy may result in worse outcomes than when it is

not used at all. However, it can achieve a higher degree of integration than the school-blind

policy when an appropriate level of requirement is adopted. Surprisingly, stricter eligibility

requirements do not always perform better than less strict ones, meaning that the optimal

level of eligibility requirement needs to be carefully chosen. We also note that our main

implications continue to hold in more general settings with a greater number of high schools.

A more general message of this paper is that policies formulated with the important

aim of desegregation may have unintended consequences, and need to be carefully designed

incorporating a rigorous economics analysis. We also contribute to the debate on the ef-

fectiveness of “race-based affirmative action policies” versus “color-blind affirmative action

policies”, since we analyze strategic responses under the top-n policy, which is a prevailing

example of a color-blind policy. We hope that, with more theoretical and empirical work on

this important topic, researchers will not only evaluate current and alternative policies, but

will also guide policymakers toward implementing more effective strategies and programs.
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Appendix A Existence of an equilibrium under the top-

n policy

First, we can see that under the top-n policy with any eligibility requirement e ∈ [0, T ],

any equilibrium has cutoff scores (a1, a2, a3), where ai is the cutoff score for high school si.

The top-n policy admits n students through top-n admissions and qU − n students through

at-large admissions. If a student with achievement a is admitted to U from high school si

through top-n admissions, any student with a′ > a from the same high school is also admitted

through top-n admissions. If a student with achievement a is admitted to U through at-large

admissions, any student with a′ > a is also admitted from any high school. Therefore, the

top-n cutoff score aNi is defined as the lowest achievement of admitted students from high

school si through top-n admissions. Similarly, the at-large cutoff score aL can be defined

as the lowest achievement of admitted students (from any high school) through at-large

admissions. Since students may or may not be admitted through at-large admissions from a

given high school, the cutoff score ai is defined as ai := min{aNi , aL}.
To prove the existence of an equilibrium under the top-n policy with any eligibility

requirement e ∈ [0, T ], let us define the following for a student with (a, g, si) given a vector

of cutoff scores a = (aN1 , a
N
2 , a

N
3 , a

L):

M g
si

(a, e, a) =
{
sj ∈ {s1, s2, s3} \ {si}

∣∣∣cg(|i− j|, T − e) ≤ v(U)− v(u) and a ∈ [aj, ai)
}

hgsi(a, e, a) =


si if a ≥ ai

sj if sj ∈M g
si

(a, e, a) and cg(|i− j|, T − e) ≤ cg(|i− k|, T − e) for any sk ∈M g
si

(a, e, a)

∅ if a < ai and M g
si

(a, e, a) = {∅}

In words, M g
si

(a, e, a) is the set of high schools that a student with (a, g, si) has an incentive

to relocate to given the eligibility requirement e and cutoff scores a. hgsi(a, e, a) is the high

school from which this student is admitted to U in the equilibrium with cutoff scores a

(which takes ∅ when this student cannot be admitted to U).

In any equilibrium, the cutoff scores a = (aN1 , a
N
2 , a

N
3 , a

L) satisfy the following four
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market-clearing conditions. The market-clearing condition for each aNi is

qi[1− Fi(aNi )] +
∑

j∈{1,2,3}\{i}

qj
∑

g∈{ḡ,g}

pgj

∫
a:si=h

g
sj

(a,e,a)

fj(a)da

=n
[
qi[1− Fi(aNi )] +

∑
j∈{1,2,3}\{i}

qj
∑

g∈{ḡ,g}

pgj

∫
a:si=h

g
sj

(a,e,a)

fj(a)da

+ max
{
qi[Fi(a

N
i )− Fi(aL)], 0

}
+ qi

∑
g∈{ḡ,g}

pgi

∫
a:∅=hgsi (a,e,a)

fi(a)da
]
.

The market-clearing condition for aL is

3∑
i=1

max
{
qi[Fi(a

N
i )− Fi(aL)], 0

}
= qU − n.

Then, we can define the following excess demand functions:

zi(a) =(1− n)
[
qi[1− Fi(aNi )] +

∑
j∈{1,2,3}\{i}

qj
∑

g∈{ḡ,g}

pgj

∫
a:si=h

g
sj

(a,e,a)

fj(a)da
]

− n
[

max
{
qi[Fi(a

N
i )− Fi(aL)], 0

}
+ qi

∑
g∈{ḡ,g}

pgi

∫
a:∅=hgsi (a,e,a)

fi(a)da
]

for i = 1, 2, 3,

z4(a) =
3∑
i=1

max
{
qi[Fi(a

N
i )− Fi(aL)], 0

}
− (qU − n).

Define a map B : [0, ā]4 → [0, ā]4 such that

Bi(a) = max
{

min{aNi + zi(a), ā}, 0
}

for i = 1, 2, 3,

B4(a) = max
{

min{aL + z4(a), ā}, 0
}
.

Since zi(·) is continuous by the continuity of Fi(·), B(·) is continuous. Then by Brouwer’s

theorem, B(·) has a fixed point a∗ = (aN∗1 , aN∗2 , aN∗3 , aL∗). We can show that zi(a
∗) = 0 is

satisfied for all i ∈ {1, . . . , 4}, and hence a∗ is a vector of equilibrium cutoff scores.

By B(a∗) = a∗, it is clear that zi(a
∗) = 0 holds for all i ∈ {1, . . . , 4} if a∗ ∈ (0, ā)4. If

aN∗i = ā happens, zi(a
∗) ≤ 0. In this case, zi(a

∗) = 0 is necessary because zi(a) < 0 would

imply Bi(a
∗) < aN∗i , which is a contradiction. If aL∗ = ā, qU −n = 0 must hold and we have

z4(a∗) = 0. Next, aN∗i = 0 should not happen because aN∗i = 0 implies zi(a
∗) > 0 by n < 1,

and it is a contradiction to Bi(a
∗) = aN∗i . aL∗ = 0 should not happen either because aL∗ = 0

would imply z4(a∗) > 0 by qU < 1, and this is a contradiction to B4(a∗) = aL∗.

26



Appendix B Omitted proofs

Appendix B.1 Proof of Proposition 1

By assumption (iv) of the cost function, students with SES type ḡ have the incentive to

move to any high schools at time T if they can be admitted to U by doing so. On the other

hand, the maximum difference of school indices that those with SES type g are willing to

accept is either 2, 1 or 0.

Consider these three scenarios under the top-n policy with no eligibility requirement

(e = 0). Take any equilibrium σ of the top-n policy with e = 0. When the low-SES type

g is willing to move to any high schools at time T , the neutrality theorem of Estevan et al.

(2018) implies that the top-n policy with no eligibility requirement achieves the same level

of integration as the SB policy.

When the low-SES type g is willing to move by one school at time T , the sum of market-

clearing conditions for three high schools is

q3F3(a(0, σ)) + q2F2(a(0, σ)) + q1F1(a(0, σ))

+ 1l{a2,3(0,σ)≥a1(0,σ)}p
g

3q3[F3({a2,3(0, σ))− F3(a1(0, σ))]

+ 1l{a1,2(0,σ)≥a3(0,σ)}p
g

1q1[F1({a1,2(0, σ))− F1(a3(0, σ))]

=1− qU

where a(0, σ) := min{a1(0, σ), a2(0, σ), a3(0, σ)}. Similarly, when the low-SES type g is not

willing to move to any other school at time T , the sum of market-clearing conditions for

three high schools is

q3F3(a(0, σ)) + q2F2(a(0, σ)) + q1F1(a(0, σ))+

p
g

3q3[F3(a3(0, σ))− F3(a(0, σ))] + p
g

2q2[F2(a2(0, σ))− F2(a(0, σ))] + p
g

1q1[F1(a1(0, σ))− F1(a(0, σ))]

=1− qU .

In either scenario, we have

q3F3(a(0, σ)) + q2F2(a(0, σ)) + q1F1(a(0, σ)) ≤ 1− qU = q3F3(aSB) + q2F2(aSB) + q1F1(aSB),

where aSB is the cutoff score under the SB policy. Then a(0, σ) ≤ aSB holds. This implies

that the population of the high-SES type ḡ at U under the top-n policy with e = 0 is larger

than that under the SB policy:

pḡ3q3[1− F3(a(0, σ))] + pḡ2q2[1− F2(a(0, σ))] + pḡ1q1[1− F1(a(0, σ))]

≥pḡ3q3[1− F3(aSB)] + pḡ2q2[1− F2(aSB)] + pḡ1q1[1− F1(aSB)].
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Note that the share of SES type ḡ at U under the SB policy is larger than the population

average pḡ:

pḡ3q3[1− F3(aSB)] + pḡ2q2[1− F2(aSB)] + pḡ1q1[1− F1(aSB)]

q3[1− F3(aSB)] + q2[1− F2(aSB)] + q1[1− F1(aSB)]
≥ pḡ3q3 + pḡ2q2 + pḡ1q1

q3 + q2 + q1

= pḡ.

Therefore, the share of ḡ at two universities under the top-n policy with e = 0 diverges from

the SB policy, and I(0, σ) ≥ I(SB) holds.

Appendix B.2 Proof of Proposition 2

By the neutrality theorem of Estevan et al. (2018), the equilibrium outcome of π1 is equivalent

to the outcome of the SB policy. Then, it suffices to show that π6 achieves weakly higher

integration than π1.

First, we can see that the share of ḡ students at U under π6 is greater than the population

average of type ḡ. The population of ḡ students admitted to U under policy π6 is

pḡ3q3[1− F3(a3(π6))] + pḡ2q2[1− F2(a2(π6))] + pḡ1q1[1− F1(a1(π6))].

Under π6, the top n fraction of students who are originally at each school are admitted, and

the rest of qU−n students are admitted according to their achievement. Then, combined with

the first-order stochastic dominance relationship of Fi’s, 1− F3(a3(π6)) ≥ 1− F2(a2(π6)) ≥
1−F1(a1(π6)) holds. By pḡ3 ≥ pḡ2 ≥ pḡ1, the share of ḡ students at U under π6 is greater than

the population average pḡ:

pḡ3q3[1− F3(a3(π6))] + pḡ2q2[1− F2(a2(π6))] + pḡ1q1[1− F1(a1(π6))]

q3[1− F3(a3(π6))] + q2[1− F2(a2(π6))] + q1[1− F1(a1(π6))]
≥ pḡ3q3 + pḡ2q2 + pḡ1q1

q3 + q2 + q1

= pḡ.

Next, by the sum of three market-clearing conditions for high schools,

1−qU = q3F3(a1(π1))+q2F2(a1(π1))+q1F1(a1(π1)) = q3F3(a3(π6))+q2F2(a2(π6))+q1F1(a1(π6)).

Together with Lemma 1, this implies a1(π6) ≤ a1(π1) ≤ a3(π6). Then, by pḡ3 ≥ pḡ2 ≥ pḡ1, we

have

pḡ3q3[1− F3(a1(π1))] + pḡ2q2[1− F2(a1(π1))] + pḡ1q1[1− F1(a1(π1))]

qU

≥p
ḡ
3q3[1− F3(a3(π6))] + pḡ2q2[1− F2(a2(π6))] + pḡ1q1[1− F1(a1(π6))]

qU
,

meaning that the share of the ḡ students admitted at U under π1 is larger than under π6

(which is larger than the population average pḡ). Therefore, the integration of U under π1

is lower than under π6.
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Appendix B.3 Proof of Lemma 1

The proof is immediate for policies π1 and π6. Estevan et al. (2018) analyzed policy π1 and

showed that a3(π1, σ
∗) ≥ a2(π1, σ

∗) ≥ a1(π1, σ
∗) holds for the unique equilibrium σ∗. Under

policy π6, there is no relocation and aNi (π6) is determined by Fi(a
N
i (π6)) = 1 − n for each

i = 1, 2, 3. Therefore, by the FOSD of Fi’s, a
N
3 (π6) ≥ aN2 (π6) ≥ aN1 (π6) holds, implying

a3(π6) ≥ a2(π6) ≥ a1(π6).

Consider policy π3 and take any equilibrium σ. First, we can show that ai+1(π3, σ) =

aL(π3, σ) holds when ai(π3, σ) = aL(π3, σ) for i = 1, 2. Suppose ai(π3, σ) = aL(π3, σ). ḡ

students at high school si cannot be admitted to U if their achievement a is lower than

a(π3, σ), and g students at high school si are not when a < aL(π3, σ). Since ai(π3, σ) =

aL(π3, σ) is weakly higher than the cutoff scores of all other schools, there are no students

migrating to si. Then,

1− Fi(aL(π3, σ))

1− Fi(aL(π3, σ)) + pḡiFi(a(π3, σ)) + p
g

iFi(a
L(π3, σ))

≥ n,

which is equivalent to 1−Fi(aL(π3, σ)) ≥ n
1−n [pḡiFi(a(π3, σ))+p

g

iFi(a
L(π3, σ))]. By the FOSD

of Fi’s, p
ḡ
i ≤ pḡi+1 and aL(π3, σ) ≥ a(π3, σ),

1− Fi+1(aL(π3, σ)) ≥ 1− Fi(aL(π3, σ))

≥ n

1− n
[pḡiFi(a(π3, σ)) + p

g

iFi(a
L(π3, σ))] ≥ n

1− n
[pḡi+1Fi(a(π3, σ)) + p

g

i+1Fi(a
L(π3, σ))]

≥ n

1− n
[pḡi+1Fi+1(a(π3, σ)) + p

g

i+1Fi+1(aL(π3, σ))].

If aL(π3, σ) > ai+1(π3, σ) happens, we would have

n =
1− Fi+1(ai+1(π3, σ)) +Mi+1

1− Fi+1(ai+1(π3, σ)) +Mi+1 + pḡi+1Fi+1(a(π3, σ)) + p
g

i+1Fi+1(ai+1(π3, σ))

>
1− Fi+1(aL(π3, σ))

1− Fi+1(aL(π3, σ)) + pḡi+1Fi+1(a(π3, σ)) + p
g

i+1Fi+1(aL(π3, σ))
≥ n,

where Mi+1 ≥ 0 is the population of students who move to si+1. This is a contradiction, and

ai+1(π3, σ) = aL(π3, σ) must hold.

Second, we show that when only students from s3 are admitted at large, (a3(π3, σ) ≥)

a2(π3, σ) ≥ a1(π3, σ) holds. Since a3(π3, σ) is the highest cutoff score in this case, toward

a contradiction, suppose a3(π3, σ) ≥ a1(π3, σ) > a2(π3, σ). Then, we have aL(π3, σ) >

aN2 (π3, σ). By a1(π3, σ) > a2(π3, σ), no student moves to s1 since moving to s2 is less costly

for students at s3. ḡ students at s1 are not admitted to U if a < aN2 (π3, σ), and g students
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at s1 are not if a < a1(π3, σ). Students at s2 are not admitted to U if a < aN2 (π3, σ). Let

M2 ≥ 0 be the population of students who move to s2. Then, we have

n =
q2[1− F2(aN2 (π3, σ))] +M2

q2[1− F2(aN2 (π3, σ))] +M2 + q2F2(aN2 (π3, σ))
=

1− F1(aN1 (π3, σ))

1− F1(aN1 (π3, σ)) + pḡ1F1(aN2 (π3, σ)) + p
g

1F1(a1(π3, σ))
,

which is equivalent to

F2(aN2 (π3, σ))

pḡ1F1(aN2 (π3, σ)) + p
g

1F1(a1(π3, σ))
=

1− F2(aN2 (π3, σ)) +M2/q2

1− F1(aN1 (π3, σ))
.

Since F2 strictly first-order stochastically dominates F1 and aN1 (π3, σ) > aN2 (π3, σ),

1 >
F1(aN2 (π3, σ))

pḡ1F1(aN2 (π3, σ)) + p
g

1F1(a1(π3, σ))
>

F2(aN2 (π3, σ))

pḡ1F1(aN2 (π3, σ)) + p
g

1F1(a1(π3, σ))

=
1− F2(aN2 (π3, σ)) +M2/q2

1− F1(aN1 (π3, σ))
≥ 1− F2(aN2 (π3, σ))

1− F1(aN1 (π3, σ))
≥ 1− F2(aN1 (π3, σ))

1− F1(aN1 (π3, σ))
.

But this contradicts the fact that F2 strictly first-order stochastically dominates F1.

Appendix B.4 Proof of Lemma 2

The proof consists of the following two parts.

[1] a2(π, σ) ≥ a1(π, σ) for any equilibrium σ of policy π ∈ {π2, π4, π5}
Toward a contradiction, suppose a1(π, σ) > a2(π, σ). For this to hold, we must have

aN1 (π, σ) > aN2 (π, σ) and aL(π, σ) > aN2 (π, σ). Note that by a1(π, σ) > a2(π, σ), no student

moves to s1 since moving to s2 is less costly for students at s3. Also, by aL(π, σ) > aN2 (π, σ),

no students from s2 are admitted at large.
Consider policy π2. ḡ students at s1 are not admitted to U if a < a2,3(π2, σ), and g

students at s1 are not admitted to U if a < aN2 (π2, σ). Let L1 ≥ 0 be the population of s1

students who are admitted at large. Students at s2 are not admitted to U if a < a2,3(π2, σ).
Let M2 ≥ 0 be the population of students who move to s2. Then, we have

n =
q2[1− F2(aN2 (π2, σ))] +M2

q2[1− F2(aN2 (π2, σ))] +M2 + q2F2(a2,3(π2, σ))
=

1− F1(aN1 (π2, σ))

1− F1(aN1 (π2, σ)) + L1 + pḡ1F1(a2,3(π2, σ)) + p
g

1F1(aN2 (π2, σ))
,

which is equivalent to

F2(a2,3(π2, σ))

L1 + pḡ1F1(a2,3(π2, σ)) + p
g

1F1(aN2 (π2, σ))
=

1− F2(aN2 (π2, σ)) +M2/q2

1− F1(aN1 (π2, σ))
.

Since F2 strictly first-order stochastically dominates F1 and aN1 (π2, σ) > aN2 (π2, σ) ≥ a2,3(π2, σ),

1 ≥
F1(a2,3(π2, σ))

L1 + pḡ1F1(a2,3(π2, σ)) + p
g

1F1(aN2 (π2, σ))
>

F2(a2,3(π2, σ))

L1 + pḡ1F1(a2,3(π2, σ)) + p
g

1F1(aN2 (π2, σ))

=
1− F2(aN2 (π2, σ)) +M2/q2

1− F1(aN1 (π2, σ))
≥ 1− F2(aN2 (π2, σ))

1− F1(aN1 (π2, σ))
≥ 1− F2(aN1 (π2, σ))

1− F1(aN1 (π2, σ))
.
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But this contradicts the fact that F2 strictly first-order stochastically dominates F1.

Consider policy π4. Students at s1 are not admitted to U if a < aN2 (π4, σ). Let L1 ≥ 0

be the population of s1 students who are admitted at large. Students at s2 are not admitted

to U if a < a2,3(π4, σ). Let M2 ≥ 0 be the population of students who move to s2. Then, we

have

n =
q2[1− F2(aN2 (π4, σ))] +M2

q2[1− F2(aN2 (π4, σ))] +M2 + q2F2(a2,3(π4, σ))
=

1− F1(aN1 (π4, σ))

1− F1(aN1 (π4, σ)) + L1 + F1(aN2 (π4, σ))
,

which is equivalent to

F2(a2,3(π4, σ))

L1 + F1(aN2 (π4, σ))
=

1− F2(aN2 (π4, σ)) +M2/q2

1− F1(aN1 (π4, σ))
.

Since F2 strictly first-order stochastically dominates F1 and aN1 (π4, σ) > aN2 (π4, σ) ≥ a2,3(π4, σ),

1 ≥ F2(aN2 (π4, σ))

L1 + F1(aN2 (π4, σ))
≥

F2(a2,3(π4, σ))

L1 + F1(aN2 (π4, σ))

=
1− F2(aN2 (π4, σ)) +M2/q2

1− F1(aN1 (π4, σ))
≥ 1− F2(aN2 (π4, σ))

1− F1(aN1 (π4, σ))
≥ 1− F2(aN1 (π4, σ))

1− F1(aN1 (π4, σ))
.

But this contradicts the fact that F2 strictly first-order stochastically dominates F1.

Consider policy π5. ḡ students at s1 are not admitted to U if a < aN2 (π5, σ), and g

students at s1 are not admitted to U if a < a1(π5, σ). Let L1 ≥ 0 be the population of s1

students who are admitted at large. ḡ students at s2 are not admitted to U if a < a2,3(π5, σ),

and g students at s2 are not admitted to U if a < aN2 (π5, σ). Let M2 ≥ 0 be the population

of students who move to s2. Then, we have

n =
q2[1− F2(aN2 (π5, σ))] +M2

q2[1− F2(aN2 (π5, σ))] +M2 + pḡ2q2F2(a2,3(π5, σ)) + p
g

2q2F2(aN2 (π5, σ))

=
1− F1(aN1 (π5, σ))

1− F1(aN1 (π5, σ)) + L1 + pḡ1F1(aN2 (π5, σ)) + p
g

1F1(a1(π5, σ))
,

which is equivalent to

pḡ2F2(a2,3(π5, σ)) + p
g

2F2(aN2 (π5, σ))

L1 + pḡ1F1(aN2 (π5, σ)) + p
g

1F1(a1(π5, σ))
=

1− F2(aN2 (π5, σ)) +M2/q2

1− F1(aN1 (π5, σ))
.

Since F2 strictly first-order stochastically dominates F1 and aN1 (π5, σ) > aN2 (π5, σ) ≥ a2,3(π5, σ),

1 >
F2(aN2 (π5, σ))

L1 + pḡ1F1(aN2 (π5, σ)) + p
g

1F1(a1(π5, σ))
≥

pḡ2F2(a2,3(π5, σ)) + p
g

2F2(aN2 (π5, σ))

L1 + pḡ1F1(aN2 (π5, σ)) + p
g

1F1(a1(π5, σ))

=
1− F2(aN2 (π5, σ)) +M2/q2

1− F1(aN1 (π5, σ))
≥ 1− F2(aN2 (π5, σ))

1− F1(aN1 (π5, σ))
≥ 1− F2(aN1 (π5, σ))

1− F1(aN1 (π5, σ))
.
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But this contradicts the fact that F2 strictly first-order stochastically dominates F1.

[2] a3(π, σ) ≥ a1(π, σ) for any equilibrium σ of policy π ∈ {π2, π4, π5}
Toward a contradiction, suppose a1(π, σ) > a3(π, σ). By [1], we must have a2(π, σ) ≥

a1(π, σ) > a3(π, σ). This implies aL(π, σ) > aN3 (π, σ) and aN2 (π, σ) > aN3 (π, σ). Then, no

students move to s2, and no students at s3 are admitted to U at large.

Consider policy π ∈ {π2, π4}. Students at s2 are not admitted to U if a < aN3 (π, σ). Let

L2 ≥ 0 be the population of s2 students who are admitted at large. Students at s3 are not

admitted to U if a < aN3 (π, σ). Let M3 ≥ 0 be the population of students who move to s3.

Then, we have

n =
q3[1− F3(aN3 (π, σ))] +M3

q3[1− F3(aN3 (π, σ))] +M3 + q3F3(aN3 (π, σ))
=

1− F2(aN2 (π, σ))

1− F2(aN2 (π, σ)) + L2 + F2(aN3 (π, σ))

which is equivalent to

F3(aN3 (π, σ))

L2 + F2(aN3 (π, σ))
=

1− F3(aN3 (π, σ)) +M3/q3

1− F2(aN2 (π, σ))
.

Since F3 strictly first-order stochastically dominates F2 and aN2 (π, σ) > aN3 (π, σ),

1 >
F3(aN3 (π, σ))

L2 + F2(aN3 (π, σ))
=

1− F3(aN3 (π, σ)) +M3/q3

1− F2(aN2 (π, σ))
≥ 1− F3(aN3 (π, σ))

1− F2(aN2 (π, σ))
≥ 1− F3(aN2 (π, σ))

1− F2(aN2 (π, σ))
.

But this contradicts the fact that F3 strictly first-order stochastically dominates F2.
Consider policy π5. ḡ students at s2 are not admitted to U if a < aN3 (π5, σ), and g

students at s2 are not admitted to U if a < a2(π5, σ). Let L2 ≥ 0 be the population of s2

students who are admitted at large. Students at s3 are not admitted to U if a < aN3 (π5, σ).
Let M3 ≥ 0 be the population of students who move to s3. Then, we have

n =
q3[1− F3(aN3 (π5, σ))] +M3

q3[1− F3(aN3 (π5, σ))] +M3 + q3F3(aN3 (π5, σ))
=

1− F2(aN2 (π5, σ))

1− F2(aN2 (π5, σ)) + L2 + pḡ2F2(aN3 (π5, σ)) + p
g

2F2(a2(π5, σ))
,

which is equivalent to

F3(aN3 (π5, σ))

L2 + pḡ2F2(aN3 (π5, σ)) + p
g

2F2(a2(π5, σ))
=

1− F3(aN3 (π5, σ)) +M3/q3

1− F2(aN2 (π5, σ))
.

Since F3 strictly first-order stochastically dominates F2 and aN2 (π5, σ) > aN3 (π5, σ),

1 ≥ F2(aN3 (π5, σ))

L2 + pḡ2F2(aN3 (π5, σ)) + p
g

2F2(a2(π5, σ))
>

F3(aN3 (π5, σ))

L2 + pḡ2F2(aN3 (π5, σ)) + p
g

2F2(a2(π5, σ))

=
1− F3(aN3 (π5, σ)) +M3/q3

1− F2(aN2 (π5, σ))
≥ 1− F3(aN3 (π5, σ))

1− F2(aN2 (π5, σ))
≥ 1− F3(aN2 (π5, σ))

1− F2(aN2 (π5, σ))
.

But this contradicts the fact that F3 strictly first-order stochastically dominates F2.
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Appendix B.5 Proof of Proposition 3

Let mi,j(π, σ) be the population of students who move from si to sj in the equilibrium σ of

policy π.

Proposition 1 implies that policy π1 achieves weakly higher integration than π2 and π3.

Proposition 2 shows that π6 achieves weakly higher integration than π1. Therefore, to show

the optimality of π6 when π4 is not feasible, it suffices to prove that π6 achieves weakly higher

integration than π5.

Given that π6 is biased toward the type-ḡ students, it is equivalent to showing that the

share of g students at U under π5 is lower than under π6 in any equilibrium. Under policy

πk ∈ {π5, π6}, the population of g students admitted to U given cutoff scores (a1, a2, a3) is

p
g

3q3[1− F3(a3)] + p
g

2q2[1− F2(a2)] + p
g

1q1[1− F1(a1)].

Then, it suffices to show ai(π5, σ) ≥ ai(π6) for each i ∈ {1, 2, 3} for any equilibrium σ of π5.

Consider when a3(π6) = a2(π6) = a1(π6). We can show a3(π5, σ) = a2(π5, σ) = a1(π5, σ)

for any equilibrium σ of π5, implying ai(π5, σ) = ai(π6) for each i ∈ {1, 2, 3} by the market-

clearing conditions. Suppose that a3(π5, σ) = a2(π5, σ) = a1(π5, σ) does not hold for some

equilibrium σ of π5. By Lemma 2, aL(π5, σ) > aN1 (π5, σ) must be the case and no students

from s1 are admitted at large. Since F2 first-order stochastically dominates F1, aN3 (π5, σ) ≥
aL(π5, σ) > aN2 (π5, σ) = aN1 (π5, σ) cannot happen and we must have aN2 (π5, σ) > aN1 (π5, σ).

Then for s1,

q1[1− F1(a1(π5, σ))] +m2,1(π5, σ) = n[q1 +m2,1(π5, σ)],

where m2,1(π5, σ) > 0. q1[1 − F1(a1(π5, σ))] = nq1 − (1 − n)m2,1(π5, σ) < nq1 ≤ q1[1 −
F1(a1(π6))] implies a1(π5, σ) > a1(π6), and hence a2(π5, σ) > a2(π6) and a3(π5, σ) > a3(π6)

also hold. But this is a contradiction because the total population of students admitted to

U under π5 would be strictly smaller than that under π6.

Consider when a3(π6) = a2(π6) > a1(π6). In this case, a3(π6) = a2(π6) = aL(π6) holds

and the market-clearing conditions are

q3[1− F3(aL(π6))] + q2[1− F2(aL(π6))] = n[q3 + q2] + (qU − n)

q1[1− F1(a1(π6))] = nq1.

Note that a3(π5, σ) = a2(π5, σ) = a1(π5, σ) cannot happen in this case. First, suppose

a3(π5, σ) = a2(π5, σ) = aL(π5, σ) > a1(π5, σ) holds in equilibrium σ. Then, we have

q3[1− F3(aL(π5, σ))] + q2[1− F2(aL(π5, σ))] = n[q3 + q2 −m2,1(π5, σ)] + (qU − n)

q1[1− F1(a1(π5, σ))] +m2,1(π5, σ) = n[q1 +m2,1(π5, σ)].
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By comparing these policies and by m2,1(π5, σ) > 0,

q3[1− F3(aL(π5, σ))] + q2[1− F2(aL(π5, σ))] < q3[1− F3(aL(π6))] + q2[1− F2(aL(π6))]

q1[1− F1(a1(π5, σ))] < q1[1− F1(a1(π6))],

implying aL(π5, σ) > aL(π6) and a1(π5, σ) > a1(π6). Second, suppose that in equilibrium

σ, there is only one i ∈ {2, 3} such that ai(π5, σ) = aL(π5, σ) and ai(π5, σ) > aj(π5, σ) for

j ∈ {2, 3} \ {i}. The market-clearing conditions for sj under these two policies satisfy

qj[1− Fj(aj(π6))] ≥ nqj

qj[1− Fj(aj(π5, σ))] +mi,j(π5, σ) = n[qj +mi,j(π5, σ)−mj,1(π5, σ)],

where mi,j(π5, σ) > 0 and mj,1(π5, σ) ≥ 0. Then, qj[1 − Fj(aj(π5, σ))] = nqj − (1 −
n)mi,j(π5, σ) − nmj,1(π5, σ) < qj[1 − Fj(aj(π6))] implies aj(π5, σ) > aj(π6), and we have

ai(π5, σ) > aj(π5, σ) > a2(π6) = a3(π6). The market-clearing condition for s1 under (π5, σ)

is q1[1− F1(a1(π5, σ))] + m2,1(π5, σ) = n[q1 + m2,1(π5, σ)], and we obtain a1(π5, σ) ≥ a1(π6)

by q1[1− F1(a1(π5, σ))] ≤ q1[1− F1(a1(π6))].

Consider when a3(π6) > a2(π6) > a1(π6). In this case, the market-clearing conditions are

q3[1− F3(a3(π6))] = nq3 + (qU − n)

q2[1− F2(a2(π6))] = nq2

q1[1− F1(a1(π6))] = nq1.

Note that a3(π5, σ) = a2(π5, σ) = a1(π5, σ) cannot happen in this case. First, suppose

that a3(π5, σ) > a2(π5, σ) > a1(π5, σ) holds in equilibrium σ. Then, the market-clearing

conditions under (π5, σ) are

q3[1− F3(a3(π5, σ))] = n[q3 −m3,2(π5, σ)] + (qU − n)

q2[1− F2(a2(π5, σ))] +m3,2(π5, σ) = n[q2 +m3,2(π5, σ)−m2,1(π5, σ)]

q1[1− F1(a1(π5, σ))] +m2,1(π5, σ) = n[q1 +m2,1(π5, σ)].

By m2,1(π5, σ) > 0 and m3,2(π5, σ) > 0, we have qi[1 − Fi(ai(π5, σ))] < qi[1 − Fi(ai(π6))],

implying ai(π5, σ) > ai(π6), for each i ∈ {1, 2, 3}. Second, suppose that a2(π5, σ) ≥
a3(π5, σ) ≥ a1(π5, σ) holds in equilibrium σ. Then for s3, the market-clearing condition sat-

isfies q3[1−F3(a3(π5, σ))] ≤ nq3 + (qU −n) = q3[1−F3(a3(π6))], implying a3(π5, σ) ≥ a3(π6).

Therefore, we have a2(π5, σ) ≥ a3(π5, σ) ≥ a3(π6) > a2(π6). The market-clearing condition

for s1 under (π5, σ) is q1[1−F1(a1(π5, σ))] +m2,1(π5, σ) = n[q1 +m2,1(π5, σ)], and we obtain

a1(π5, σ) ≥ a1(π6) by q1[1− F1(a1(π5, σ))] ≤ q1[1− F1(a1(π6))].
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Appendix B.6 Proof of Proposition 4

Let σ be an arbitrary equilibrium of policy π4. By the same logic as the comparison of π5

and π6 in Proposition 3, ai(π4, σ) ≥ ai(π6) holds for any i ∈ {1, 2, 3}. Then, together with

the assumption a2,3(π4, σ) ≤ a3(π6), the population of ḡ students at U under π4 is weakly

larger than under π6:

pḡ3q3[1− F3(a2,3(π4, σ))] + pḡ2q2[1− F2(a1(π4, σ))] + pḡ1q1[1− F1(a1(π4, σ))]

≥pḡ3q3[1− F3(a3(π6))] + pḡ2q2[1− F2(a2(π6))] + pḡ1q1[1− F1(a1(π6))].

Since the share of ḡ at U under π6 is higher than the population average, the integration of

U under (π4, σ) is lower than under π6.

Appendix B.7 Proof of Proposition 5

Let σ be an arbitrary equilibrium of policy π4 such that a2,3(π4, σ) > a3(π6).

First, we can see that strictly less students from s3 are admitted to U under (π4, σ) than

under π6 because q3[1 − F3(a2,3(π4, σ))] < q3[1 − F3(a3(π6))]. Next, we show that strictly

less students from s1 are admitted to U under (π4, σ) than under π6. Since a1(π4, σ) =

mini{ai(π4, σ)} and a3(π6) = maxi{ai(π6)}, for the market-clearing conditions to hold under

both policies, we must have a3(π6) ≥ a1(π4, σ). Then, the assumption a2,3(π4, σ) > a3(π6)

implies a2,3(π4, σ) > a1(π4, σ). By a2(π4, σ) > a1(π4, σ), q1F1(a1(π4, σ)) = (1 − n)[q1 +

m2,1(π4, σ)] > (1 − n)q1 holds. On the other hand, F1(a1(π6)) ≤ 1 − n holds because

of no move across high schools under π6. Then, we have a1(π4, σ) > a1(π6), implying

q1[1 − F1(a1,2(π4, σ))] < q1[1 − F1(a1(π6))]. By the two facts above, strictly more students

from s2 are admitted to U under (π4, σ) than under π6.

Given pḡ3 and pḡ1, let us consider two cases where pḡ3 = pḡ2 and pḡ2 = pḡ1. When pḡ3 = pḡ2 > pḡ1,

the admitted population of ḡ students is strictly higher under (π4, σ) than under π6. Since the

share of ḡ students at U under π6 is greater than the population average, the integration of

U under (π4, σ) is strictly lower than under π6. When pḡ3 > pḡ2 = pḡ1, the admitted population

of ḡ students is strictly lower under (π4, σ) than under π6. It is not clear which of (π4, σ)

and π6 is optimal in this case because the share of ḡ students at U may even be lower than

the population average under (π4, σ). But since the share of ḡ students at U continuously

decreases as pḡ2 goes down and by qU > n, there exists an interval (x, y) ⊂ [pḡ1, p
ḡ
3] such that

for any pḡ2 ∈ (x, y) the share of ḡ students at U is between π6 and the population average.

In this interval, (π4, σ) achieves a strictly higher integration than π6.
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Appendix B.8 Proof of Proposition 6

First, qU − n < 2
3
d1 + 1

3
d2 implies that neither a2,3(π6) = a1(π6) nor a2,3(π4, σ) = a1(π4, σ)

holds for any equilibrium σ of policy π4. To see these, first, a2,3(π6) = a1(π6) would imply

a3(π6) = a2(π6) = a1(π6), which would require qU ≥ 1
3
(3n + 2d1 + d2), but this is a contra-

diction. Next, if a2,3(π4, σ) = a1(π4, σ) holds, a2(π4, σ) > a3(π4, σ) = a1(π4, σ) is impossible

because no student from s3 would be admitted at large and a3(π4, σ) ≥ 1+d1 +d2−n would

hold but it is a contradiction to the fact that U admits qU > n students. Then, we would

have a3(π4, σ) ≥ a2(π4, σ) = a1(π4, σ). But this would also imply qU ≥ 1
3
(3n + 2d1 + d2)

because a student from any high school with a ≥ a1(π4, σ) would be admitted to U and

a1(π4, σ) ≤ 1 − n. Then, it is again a contradiction to the condition qU − n < 2
3
d1 + 1

3
d2.

Therefore, we have both a2,3(π6) > a1(π6) and a2,3(π4, σ) > a1(π4, σ).

Consider cases with a3(π6) = a2(π6) > a1(π6). By the same logic as the comparison

between π6 and π5 in Proposition 3, a2,3(π4, σ) > a3(π6) = a2(π6) holds for any equilibrium

σ of π4 and the proof is done.

Next, consider cases with a3(π6) > a2(π6) > a1(π6). Note that in this case, a3(π6) =

1 + d1 + d2− n− 3(qU − n). First, suppose that any equilibrium σ of π4 satisfies a2(π4, σ) >

a3(π4, σ) ≥ a1(π4, σ). Consider an equilibrium σ̂ in which all students in s2 with achievement

a ∈ [a3(π4, σ̂), a2(π4, σ̂)) relocate to s1. Then, we have a2(π4, σ̂) > a3(π4, σ̂) = 1+d1+d2−n >
1+d1 +d2−n−3(qU−n) = a3(π6), implying a2,3(π4, σ̂) > a3(π6). Second, suppose that there

is an equilibrium σ̄ of π4 that satisfies a3(π4, σ̄) > a2(π4, σ̄) ≥ a1(π4, σ̄). The market-clearing

conditions under π4 imply

1

3
[a2(π4, σ̄)− d1 − d2 + a1(π4, σ̄)− d1] = (1− n)

1

3
[1− (a2(π4, σ̄)− a1(π4, σ̄))]− (qU − n)

1

3
a1(π4, σ̄) = (1− n)

1

3
[1 + (a2(π4, σ̄)− a1(π4, σ̄))]

By solving these, we obtain

a2(π4, σ̄) =
1

4− 3n

[
(2− n)[3(1− qU) + 2d1 + d2]− 2(1− n)

]
a1(π4, σ̄) =

1− n
4− 3n

[
1 + 3(1− qU) + 2d1 + d2

]
Then, qU − n > − n

6(1−n)
d1 + 1

3
d2 implies

a2(π4, σ̄) =
1

4− 3n

[
(2− n)[3(1− qU) + 2d1 + d2]− 2(1− n)

]
>1 + d1 + d2 − n− 3(qU − n) = a3(π6).
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